Fixed-point-free variations

(Reference A336246)
$\mathrm{V}(\mathrm{n}, \mathrm{k})$ is the number of ways to place n persons on different seats such that each person number $p, 1 \leq p \leq n$ differs from the seat number $s(p)$, $1 \leq \mathrm{s}(\mathrm{p}) \leq \mathrm{n}+\mathrm{k}, \mathrm{k} \geq 0$.

Annotation: Here, n is used rather than $i ; k$ is the number of free seats. Abbreviation: $\mathrm{V}(\mathrm{n}, \mathrm{k})$ is the number of (n, k)-arrangements (variations).

Recurrence: $\mathrm{V}(\mathrm{n}, \mathrm{k})=(\mathrm{n}+\mathrm{k}-1) \cdot \mathrm{V}(\mathrm{n}-1, \mathrm{k})+(\mathrm{n}-1) \cdot \mathrm{V}(\mathrm{n}-2, \mathrm{k})$ for $\mathrm{n} \geq 2, \mathrm{k} \geq 0$

$$
\text { with } V(0, k)=1 \text { and } V(1, k)=k
$$

For $\mathrm{n}=0$, there is one empty arrangement. For $\mathrm{n}=1$, the person can be placed on seat number 2 thru $\mathrm{k}+1$ (if $\mathrm{k}>0$).

Explicite formula: $V(n, k)=\sum_{r=0}^{n}(-1)^{r}\binom{n}{r} \frac{(n+k-r)!}{k!}$
A constructive proof of the recurrence is based on this fact:
For $n \geq 2$, any (n, k)-arrangement can be reduced to a ($\mathrm{n}-2, \mathrm{k}$)-arrangement by removing two persons and two seats or to a ($\mathrm{n}-1, \mathrm{k}$)-arrangement by removing one person and one seat. Inversely, any (n, k)-arrangement can be produced by extending ($\mathrm{n}-1, \mathrm{k}$)- and ($\mathrm{n}-2, \mathrm{k}$)-arrangements, see appendix.

1. Proof of the recurrence

There are two types of (n, k)-arrangements:
Type 1: $\mathrm{s}(\mathrm{n})<\mathrm{n}$ and $\mathrm{s}(\mathrm{s}(\mathrm{n}))=\mathrm{n}+\mathrm{k}$, type 2 : $\mathrm{s}(\mathrm{n})>\mathrm{n}$ or $\mathrm{s}(\mathrm{s}(\mathrm{n})) \neq \mathrm{n}+\mathrm{k}$ Let $V_{j}(n, k)$ be the number of (n, k)-arrangements of type $j, j=1,2$

Type 1
Person n selects the seat $\mathrm{q}=\mathrm{s}(\mathrm{n}), 1<=\mathrm{q}<\mathrm{n}$, and person q selects the seat $\mathrm{n}+\mathrm{k}$. First we remove the persons and seats with numbers n and q . Then we reduce $p \rightarrow p^{\prime}=p-1$ for $p>q$ and $s^{\prime}=s-1$ for $s>q$. If p and s are both smaller or greater than q, then $s^{\prime} \neq p^{\prime}$ follows from $s \neq p$. Otherwise $|p-s|>1$, as seat q is gone, and therefore $\left|\mathrm{p}^{\prime}-\mathrm{s}^{\prime}\right|>0$.
The inversion with given $\mathrm{q}, 1 \leq \mathrm{q}<\mathrm{n}$, is unambiguous: Increase, in the ($\mathrm{n}-2, \mathrm{k}$)-arrangement, all seat numbers $\mathrm{s} \geq \mathrm{q}$ by 1 such that seat q does not occur and the largest possible seat number is $\mathrm{n}+\mathrm{k}-1$. Insert person q with seat $\mathrm{n}+\mathrm{k}$ and person n with seat q . Therefore, the number of (n, k)-arrangements of type 1 , with given q , equals the number of ($\mathrm{n}-2, \mathrm{k}$)-arrangements.
Summing over $n-1$ values of q, we yield $V_{1}(n, k)=(n-1) \cdot V(n-2, k)$.

Type 2
Person n selects the seat $q=s(n), 1 \leq q \leq n+k, q \neq n$, and, if $q<n$, person q selects the seat $s(q) \neq n+k$. First we remove person n so that seat q is free now. If seat $n+k$ is also free, we remove this seat immediately. Otherwise, we first move the person p sitting there to seat q. This way, we yield a ($\mathrm{n}-1, \mathrm{k}$)-arrangement. Again the inversion, with given q , is unambiguous: If seat q is occupied in the ($\mathrm{n}-1, \mathrm{k}$)-arrangement, we move the person $\mathrm{p} \neq \mathrm{q}$ to seat $\mathrm{n}+\mathrm{k}$ (which satisfies $\mathrm{s}(\mathrm{q}) \neq \mathrm{n}+\mathrm{k}$) and place person n on seat q .
Therefore, the number of (n, k)-arrangements of type 2 , with given q , equals the number of ($\mathrm{n}-1, \mathrm{k}$)-arrangements.
Summing over $n+k-1$ values of q, we yield $V_{2}(n, k)=(n+k-1) \cdot V(n-2, k)$.
With $V(n, k)=V_{1}(n, k)+V_{2}(n, k)$, the recurrence is proved.

2. Proof of the explicite formula

Here the more general term 'variation' is used instead of 'seat arrangement'.
For V(n, 0), see 'Counting derangements' in
https://en.wikipedia.org/wiki/Inclusion\�\�\�exclusion principle
The number of variations of placing n persons on $n+k$ seats is $\frac{(n+k)!}{k!}$. Let $A(q)$ be the set of variations with fixed point $q(s(q)=q)$. Select r persons $1 \leq \mathrm{q}_{1}<\mathrm{q}_{2}<\ldots<\mathrm{q}_{\mathrm{r}} \leq \mathrm{n}$. The cardinality of $\left|A\left(q_{1}\right) \cap \ldots \cap A\left(q_{r}\right)\right|$ is $\frac{(n+k-r)!}{k!}$ because r points (persons and seats) are fixed. The number of selections of $\mathrm{q}_{1}, \mathrm{q}_{2}, \ldots, \mathrm{q}_{\mathrm{r}}$ is $\binom{n}{r}$ and, therefore, the number of variations with r fixed points is $\binom{n}{r} \frac{(n+k-r)!}{k!}$, multiple counts included. These are discounted by using the principle of inclusion-exclusion (see link above), which yields the number of all variations with at least one fixed point:
$\bar{V}(n, k)=\sum_{r=1}^{n}(-1)^{r-1}\binom{n}{r} \frac{(n+k-r)!}{k!}$.
Therefore, $V(n, k)=\frac{(n+k)!}{k!}-\bar{V}(n, k)=\sum_{r=0}^{n}(-1)^{r}\binom{n}{r} \frac{(n+k-r)!}{k!}$ q.e.d.

3. Appendix: Maxima code and output, using the recurrence
 All variations $\mathrm{V}(\mathrm{n}, \mathrm{k})$ with n persons and $\mathrm{n}+\mathrm{k}$ seats are returned:

```
block(k:1, n:3, v2:[""],v3: [],
    for n0 from 0 thru n-1 do
        (n1:n0+1,n2: n0+2,v1:v2,v2:v3,v3:[],
        for nu from 1 thru length(v1) do /*make type 2*/
            (for q from 1 thru n1+k do
                if q#n1 then
                    (w:v1[nu], w:ssubst(string(n1+k),string(q),w),
                    w:concat(w,string(q)) ,v2:append(v2,[w])),
            if n0<n-1 then
                    for q from 1 thru n2-1 do /*make type 1*/
                    (w:v1[nu], u:string(q) ,
                    for s from 1 thru n2-2 do
                    (t:cint(substring(w,s,s+1)),
                    if t>=48+q then w:ssubst(ascii(t+1),ascii(t) ,w,s,s+1)),
                    w: concat(sinsert(string(n2+k) ,w,q),string(q)),
                    v3: append(v3,[w])))),
        print(concat("V(",n,",",k,")","=",length(v2), " variations:")),
        return(v2) );
```

 \(V(3,1)=11\) variations:
 [$431,342,341,312,314,241,412,214,231,432,234]$

The first triple means: Person 1 on seat 4 , person 2 on seat 3 , person 3 on seat 1 .

```
V(4,1) = 53 variations:
[5421,4512,4153,5321,3512,2153,5341,3542,2453,4351,4312,4513,4315,
3421,3452,5423,3425,3451,3412,5413,3415,3521,3152,5123,3125,3541,
3142,5143,3145,2451,5412,2413,2415,4521,4152,4123,4125,2541,5142,
2143,2145,2351,5312,2513,2315,4321,4352,4523,4325,2341,5342,2543,
2345]
    V(3,2)=32 variations:
[531,352,541,452,451,412,514,415,251,512,214,215,231,532,234,235,
241,542,254,245,351,312,314,315,431,432,534,435,341,342,354,345]
                    V(4,2)=181 variations:
[6521,5612,5163,6321,3612,2163,6341,3642,2463,6351,3652,2563,6421,
4612,4163,6541,5642,5463,6451,4652,4563,5361,5312,5613,6315,5316,
3521,3562,6523,3625,3526,5461,5412,5413,6415,5416,4521,4562,4523,
4625,4526,4561,4512,4513,4615,4516,4621,4162,4123,4125,4126,5641,
5142,5143,6145,5146,4651,4152,4153,4165,4156,2561,6512,2513,2615,
2516,5621,5162,5123,6125,5126,2641,6142,2143,2145,2146,2651,6152,
2153,2165,2156,2361,6312,2613,2315,2316,5321,5362,5623,6325,5326,
2341,6342,2643,2345,2346,2351,6352,2653,2365,2356,2461,6412,2413,
2415,2416,5421,5462,5423,6425,5426,2541,6542,2543,2645,2546,2451,
6452,2453,2465,2456,3561,3512,6513,3615,3516,3621,3162,6123,3125,
3126,3641,3142,6143,3145,3146,3651,3152,6153, 3165,3156,4361,4312,
4613,4315,4316,4321,4362,4623,4325,4326,5341,5342,5643,6345,5346,
4351,4352,4653,4365,4356,3461,3412,6413,3415,3416,3421,3462,6423,
3425,3426,3541,3542,6543,3645,3546,3451,3452,6453,3465,3456]
```

