The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A336073 Decimal expansion of the ratio of segment areas for arclength 1/3 on the unit circle; see Comments. 14
 1, 0, 2, 2, 5, 4, 7, 3, 7, 3, 9, 3, 6, 0, 4, 9, 2, 0, 3, 6, 1, 9, 7, 5, 9, 2, 5, 8, 0, 5, 8, 3, 9, 9, 9, 4, 3, 9, 3, 4, 3, 5, 7, 9, 0, 8, 2, 6, 1, 2, 2, 0, 3, 3, 2, 8, 1, 0, 3, 5, 8, 1, 6, 0, 4, 5, 3, 5, 0, 7, 6, 4, 6, 4, 5, 7, 1, 0, 5, 1, 1, 0, 1, 0, 1, 7 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 4,3 COMMENTS Suppose that s in (0,Pi) is the length of an arc of the unit circle.  The associated chord separates the interior into two segments. Let A1 be the area of the larger and A2 the area of the smaller. The term "ratio of segment areas" means A1/A2. ***************** Guide to related sequences: arclength,s   ratio, A1/A2 1/3           A336073 Pi/6          A336074 Pi/5          A336075 Pi/4          A336076 Pi/3          A336077 Pi/2          A336078 1             A336079 2             A336080 3             A336081 ***************** ratio, A1/A2  arclength, s 2             A336082 3             A336083 4             A336084 5             A336085 1/2           A336086 LINKS FORMULA ratio = (2*Pi - s + sin(s))/(s - sin(s)), where s = 1/3. EXAMPLE ratio = 1022.54737393604920361975925805839994393435790826122033281 MATHEMATICA s = 1/3; r = N[(2 Pi - s + Sin[s])/(s - Sin[s]), 200] RealDigits[r][[1]] CROSSREFS Cf. A336059-A336086. Sequence in context: A261114 A284827 A241306 * A266792 A162200 A290289 Adjacent sequences:  A336070 A336071 A336072 * A336074 A336075 A336076 KEYWORD nonn,cons AUTHOR Clark Kimberling, Jul 10 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 26 22:05 EST 2022. Contains 350601 sequences. (Running on oeis4.)