login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A336015 Irregular triangle where row n lists primes q below the n-th primorial such that the multiplicative order of q mod the n-th primorial is 2. I.e., such primes q having the least k such that q^k (mod primorial(n)) == 1 is 2. 3

%I

%S 5,11,19,29,29,41,71,139,181,419,461,659,769,881,1231,1429,2309,1429,

%T 2729,4159,5279,5851,8009,8581,10009,12011,12739,13441,13859,14741,

%U 15289,17291,20021,23869,24179,30029,1429,23869,77351,95369,102101,116689,120121,188189

%N Irregular triangle where row n lists primes q below the n-th primorial such that the multiplicative order of q mod the n-th primorial is 2. I.e., such primes q having the least k such that q^k (mod primorial(n)) == 1 is 2.

%H David A. Corneth, <a href="/A336015/b336015.txt">Table of n, a(n) for n = 2..10001</a>

%e Table begins:

%e 5;

%e 11, 19, 29;

%e 29, 41, 71, 139, 181;

%e 419, 461, 659, 769, 881, 1231, 1429, 2309;

%e ...

%e For row 2 we look for primes q such that q^2 == 1 (mod primorial(2)) == 1 (mod 6) where q is coprime to 6. It turns out the only prime with this property is 5 as 5^2 == 1 (mod 6). - _David A. Corneth_, Aug 15 2020

%t Table[Function[P, Select[Prime@ Range[n, PrimePi[P - 1]], MultiplicativeOrder[#, P] == 2 &]][Product[Prime@ i, {i, n}]], {n, 8}] // Flatten

%o (PARI) row(n) = my(pp = vecprod(primes(n)), res=List()); forstep(i=pp/prime(n)+1, pp-1, 2, if(gcd(i,pp) == 1 && znorder(Mod(i,pp)) == 2 && isprime(i), listput(res,i))); res \\ _David A. Corneth_, Jul 08 2020

%Y Cf. A000010, A002110, A005867, A336016.

%K nonn,tabf

%O 2,1

%A _Michael De Vlieger_, _David James Sycamore_, _David A. Corneth_, Jul 08 2020

%E New name from _David A. Corneth_, Aug 15 2020

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 24 12:30 EDT 2021. Contains 345416 sequences. (Running on oeis4.)