When $[x, y, z]$ is a row, $f(a, b)=x a b+y(a+b)+z$ is associative.
For each triple, the corresponding $f(a, b)$ has a unique identity element (I), meaning $\mathrm{f}(\mathrm{a}, \mathrm{I})=\mathrm{f}(\mathrm{I}, \mathrm{a})=\mathrm{a}$, for all $\mathrm{a} . \mathrm{I}=-\frac{\mathrm{z}}{\mathrm{y}} . \quad \mathrm{f}(\mathrm{a}, \mathrm{b})$ also has a unique zero element (call it θ), meaning $\mathrm{f}(\mathrm{a}, \theta)=\mathrm{f}(\theta, \mathrm{a})=\theta$, for all $\mathrm{a} . \quad \theta=-\frac{\mathrm{y}}{\mathrm{x}}$.
$\mathrm{f}(\mathrm{a}, \mathrm{b})$, defined by each row, also has a distributive rule when the generalized zero is taken into account. This means that if we define a "partition" of b by $b=b_{1}+b_{2}-\theta$, then $\mathrm{f}(\mathrm{a}, \mathrm{b})=\mathrm{f}\left(\mathrm{a}, \mathrm{b}_{1}+\mathrm{b}_{2}-\theta\right)=\mathrm{f}\left(\mathrm{a}, \mathrm{b}_{1}\right)+\mathrm{f}\left(\mathrm{a}, \mathrm{b}_{2}\right)-\theta$ for all a and b , and all "partitions" of b .
Notice that when $\theta=0$, we have the usual distributive rule. However, in that case we would need $y=0$ which corresponds to $f(a, b)=x a b$ or $f(a, b)=z$, neither of which is allowed.

Another way to write $\mathrm{f}(\mathrm{a}, \mathrm{b})$ for a row is to first compute I and θ from x, y and z . Then

$$
\begin{aligned}
& \mathrm{f}(\mathrm{a}, \mathrm{~b})=\frac{\mathrm{ab}-\theta(\mathrm{a}+\mathrm{b})+\mathrm{I} \theta}{\mathrm{I}-\theta} \text { or equivalently } \\
& \mathrm{f}(\mathrm{a}, \mathrm{~b})=\frac{\mathrm{ab}-\theta(\mathrm{a}+\mathrm{b})+\theta^{2}}{\mathrm{I}-\theta}+\theta
\end{aligned}
$$

Notice that I cannot equal θ because of $\mathrm{I}-\theta$ in the denominator. Also notice that when $\mathrm{I}=1$ and
$\theta=0, \quad \mathrm{f}(\mathrm{a}, \mathrm{b})=\mathrm{ab}$, but multiplication is not represented in the table since the corresponding row would be $[1,0,0]$, which is not allowed.

If (i) two rows are $\left[x_{1}, y_{1}, z_{1}\right]$ and $\left[x_{2}, y_{2}, z_{2}\right]$
(ii) $\quad \mathrm{I}_{1}=-\frac{\mathrm{z}_{1}}{\mathrm{y}_{1}}, \quad \mathrm{I}_{2}=-\frac{\mathrm{z}_{2}}{\mathrm{y}_{2}}, \quad \theta_{1}=-\frac{\mathrm{y}_{1}}{\mathrm{x}_{1}}, \quad \theta_{2}=-\frac{\mathrm{y}_{2}}{\mathrm{x}_{2}}$
(iii) $\frac{\mathrm{I}_{1}}{\theta_{2}}+\frac{\mathrm{I}_{2}}{\theta_{1}}=2$
then $\left[\mathrm{x}_{1}+\mathrm{x}_{2}, \mathrm{y}_{1}+\mathrm{y}_{2}, \mathrm{z}_{1}+\mathrm{z}_{2}\right]$ is a row.
Consequently,
if (i) $f_{1}(a, b)=x_{1} a b+y_{1}(a+b)+z_{1}$ is associative and $\mathrm{f}_{2}(\mathrm{a}, \mathrm{b})=\mathrm{x}_{2} \mathrm{ab}+\mathrm{y}_{2}(\mathrm{a}+\mathrm{b})+\mathrm{z}_{2}$ is associative
(ii) $\mathrm{I}_{1}=-\frac{\mathrm{z}_{1}}{\mathrm{y}_{1}}, \quad \mathrm{I}_{2}=-\frac{\mathrm{z}_{2}}{\mathrm{y}_{2}}, \quad \theta_{1}=-\frac{\mathrm{y}_{1}}{\mathrm{x}_{1}}, \quad \theta_{2}=-\frac{\mathrm{y}_{2}}{\mathrm{x}_{2}}$
(iii) $\frac{\mathrm{I}_{1}}{\theta_{2}}+\frac{\mathrm{I}_{2}}{\theta_{1}}=2$
then $f_{1}(a, b)+f_{2}(a, b)=\left(x_{1}+x_{2}\right) a b+\left(y_{1}+y_{2}\right)(a+b)+z_{1}+z_{2}$ is associative.

Proof:
Given $\left[\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right]$ and $\left[\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right]$ are rows, the following algebraic manipulations show that $\left[\mathrm{x}_{1}+\mathrm{x}_{2}, \mathrm{y}_{1}+\mathrm{y}_{2}, \mathrm{z}_{1}+\mathrm{z}_{2}\right]$ is a row.

Say $\frac{I_{1}}{\theta_{2}}+\frac{I_{2}}{\theta_{1}}=2$.
$\frac{-\frac{\mathrm{z}_{1}}{\mathrm{y}_{1}}}{-\frac{\mathrm{y}_{2}}{\mathrm{x}_{2}}}+\frac{-\frac{\mathrm{z}_{2}}{\mathrm{y}_{2}}}{-\frac{\mathrm{y}_{1}}{\mathrm{x}_{1}}}=2$
$\frac{x_{2} z_{1}}{y_{1} y_{2}}+\frac{x_{1} z_{2}}{y_{1} y_{2}}=2 \quad$ [Multiply by $y_{1} y_{2}$ and move to the right.]
$0=2 \mathrm{y}_{1} \mathrm{y}_{2}-\mathrm{x}_{1} \mathrm{z}_{2}-\mathrm{x}_{2} \mathrm{z}_{1} \quad$ [Add to the right side $\mathrm{y}_{1}^{2}-\mathrm{y}_{1}-\mathrm{x}_{1} \mathrm{z}_{1}$ and $\mathrm{y}_{2}^{2}-\mathrm{y}_{2}-\mathrm{x}_{2} \mathrm{z}_{2}$, which both equal 0.]

$$
\begin{aligned}
& 0=2 \mathrm{y}_{1} \mathrm{y}_{2}-\mathrm{x}_{1} \mathrm{z}_{2}-\mathrm{x}_{2} \mathrm{z}_{1}+\mathrm{y}_{1}^{2}-\mathrm{y}_{1}-\mathrm{x}_{1} \mathrm{z}_{1}+\mathrm{y}_{2}^{2}-\mathrm{y}_{2}-\mathrm{x}_{2} \mathrm{z}_{2} \quad \text { [Rearrange.] } \\
& 0=\mathrm{y}_{1}^{2}+2 \mathrm{y}_{1} \mathrm{y}_{2}+\mathrm{y}_{2}^{2}-\mathrm{y}_{1}-\mathrm{y}_{2}-\mathrm{x}_{1} \mathrm{z}_{1}-\mathrm{x}_{1} \mathrm{z}_{2}-\mathrm{x}_{2} \mathrm{z}_{1}-\mathrm{x}_{2} \mathrm{z}_{2} \\
& 0=\left(\mathrm{y}_{1}+\mathrm{y}_{2}\right)^{2}-\left(\mathrm{y}_{1}+\mathrm{y}_{2}\right)-\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right)\left(\mathrm{z}_{1}+\mathrm{z}_{2}\right) \text { QED. }
\end{aligned}
$$

The idea of summing rows to get another row can be extended.
If (i) three rows are $\left[\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right], \quad\left[\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right]$, and $\left[\mathrm{x}_{3}, \mathrm{y}_{3}, \mathrm{z}_{3}\right]$
(ii) I and θ are defined as above
(iii) $\left(\frac{\frac{\mathrm{I}_{1}}{\theta_{2}}+\frac{\mathrm{I}_{2}}{\theta_{1}}-2}{\mathrm{y}_{3}}\right)+\left(\frac{\frac{\mathrm{I}_{1}}{\theta_{3}}+\frac{\mathrm{I}_{3}}{\theta_{1}}-2}{\mathrm{y}_{2}}\right)+\left(\frac{\frac{\mathrm{I}_{2}}{\theta_{3}}+\frac{\mathrm{I}_{3}}{\theta_{2}}-2}{\mathrm{y}_{1}}\right)=0$
then $\left[x_{1}+x_{2}+x_{3}, y_{1}+y_{2}+y_{3}, z_{1}+z_{2}+z_{3}\right]$ is a row.
Generalizing, when summing n rows to another row, the criterion involves the sum of binomial($\mathrm{n}, 2$) versions of $\frac{I_{i}}{\theta_{j}}+\frac{I_{j}}{\theta_{i}}-2$ as i and j go from 1 to n and $i<j$. Furthermore, each of these expressions is divided by the product of the y values from rows other than i and j . There are binomial($\mathrm{n}, \mathrm{n}-2$) $=$ binomial(n,2) such products.

Formally this is:
If $\left[\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right], \ldots,\left[\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}, \mathrm{z}_{\mathrm{n}}\right]$ are rows and

$$
\sum_{1 \leq i<j \leq n} \frac{\frac{I_{i}}{\theta_{j}}+\frac{I_{j}}{\theta_{i}}-2}{\prod_{\mathrm{k}=1 . . n}^{k \neq i, j}} y_{k}=0
$$

then $\left[\sum_{m=1}^{n} x_{m}, \sum_{m=1}^{n} y_{m}, \sum_{m=1}^{n} z_{m}\right]$ is a row.

All of the above is still true when $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{I}$ and θ are complex numbers with $\mathrm{y} \neq 1$ and $\mathrm{x}, \mathrm{y}, \mathrm{z} \neq 0$.

If $[x, y, z]$ is not a row, compute $K=\frac{y}{y^{2}-x z}$. Then $K[x, y, z]$ is a row if it is an integer triple. Note that if $[x, y, z]$ were a row, $K=1$. Furthermore, if $[n x, n y, n z]$ is not a row, compute $\mathrm{K}^{\prime}=\frac{\mathrm{ny}}{(\mathrm{ny})^{2}-(\mathrm{nx})(\mathrm{nz})}=\frac{\mathrm{y}}{\mathrm{n}\left(\mathrm{y}^{2}-\mathrm{xz}\right)}=\frac{\mathrm{K}}{\mathrm{n}}$. Then $\quad \mathrm{K}^{\prime}[\mathrm{nx}, \mathrm{ny}, \mathrm{nz}]=\mathrm{K}[\mathrm{x}, \mathrm{y}, \mathrm{z}]$
as before. When $K[x, y, z]$ is not a triple for not having integer values, we still have

$$
(K y)^{2}-K y-(K x)(K z)=0
$$

Examples of the distributive rule:
$[\mathrm{x}, \mathrm{y}, \mathrm{z}]=[1,2,2]$
$\mathrm{f}(\mathrm{a}, \mathrm{b})=\mathrm{ab}+2(\mathrm{a}+\mathrm{b})+2$
$\theta=-\frac{\mathrm{y}}{\mathrm{x}}=-2$
$\mathrm{f}(5,7)=35+2(5+7)+2=61$ which equals
$\mathrm{f}(5,3+2-(-2))=\mathrm{f}(5,3)+\mathrm{f}(5,2)-(-2)=(15+16+2)+(10+14+2)+2=61$.
$\mathrm{f}(5,8)=40+2(5+8)+2=68$ which equals
$\mathrm{f}(5,4+2-(-2))=\mathrm{f}(5,4)+\mathrm{f}(5,2)-(-2)=(20+18+2)+(10+14+2)+2=68$.

Examples of rows that sum to another row:

$[1,7,42]+[2,8,28]=[3,15,70]$ because

$$
\frac{\mathrm{I}_{1}}{\theta_{2}}+\frac{\mathrm{I}_{2}}{\theta_{1}}=\frac{-\frac{42}{7}}{-\frac{8}{2}}+\frac{-\frac{28}{8}}{-\frac{7}{1}}=2
$$

$[42,7,1]+[28,8,2]=[70,15,3]$ because

$$
\frac{\mathrm{I}_{1}}{\theta_{2}}+\frac{\mathrm{I}_{2}}{\theta_{1}}=\frac{-\frac{1}{7}}{-\frac{8}{28}}+\frac{-\frac{2}{8}}{-\frac{7}{42}}=2
$$

$[2,8,28]+[3,18,102]=[5,26,130]$ because

$$
\frac{\mathrm{I}_{1}}{\theta_{2}}+\frac{\mathrm{I}_{2}}{\theta_{1}}=\frac{-\frac{28}{8}}{-\frac{18}{3}}+\frac{-\frac{102}{18}}{-\frac{8}{2}}=2
$$

$[28,8,2]+[102,18,3]=[130,26,5]$ because

$$
\frac{\mathrm{I}_{1}}{\theta_{2}}+\frac{\mathrm{I}_{2}}{\theta_{1}}=\frac{-\frac{2}{8}}{-\frac{18}{102}}+\frac{-\frac{3}{18}}{-\frac{8}{28}}=2
$$

Examples of three rows that sum to a row:

$[1,2,2]+[1,2,2]+[1,5,20]=[3,9,24]$ because
$\left(\frac{\frac{\mathrm{I}_{1}}{\theta_{2}}+\frac{\mathrm{I}_{2}}{\theta_{1}}-2}{\mathrm{y}_{3}}\right)+\left(\frac{\frac{\mathrm{I}_{1}}{\theta_{3}}+\frac{\mathrm{I}_{3}}{\theta_{1}}-2}{\mathrm{y}_{2}}\right)+\left(\frac{\frac{\mathrm{I}_{2}}{\theta_{3}}+\frac{\mathrm{I}_{3}}{\theta_{2}}-2}{\mathrm{y}_{1}}\right)$
$=\left(\frac{-\frac{2}{2}}{-\frac{2}{1}}+\frac{-\frac{2}{2}}{-\frac{2}{1}}-2\right)+\left(\frac{-\frac{2}{2}}{5}+\frac{-\frac{20}{5}}{-\frac{5}{1}}-\frac{-\frac{2}{1}}{2}\right)+\binom{\frac{-\frac{2}{2}}{-\frac{5}{1}}+\frac{-\frac{20}{5}}{-\frac{2}{1}}-2}{2}=0$.
In this example no two of the rows sum to another row.

$$
\begin{aligned}
& {[1,7,42]+[2,8,28]+[3,10,30]=[6,25,100] \text { because }} \\
& \left(\frac{\frac{\mathrm{I}_{1}}{\theta_{2}}+\frac{\mathrm{I}_{2}}{\theta_{1}}-2}{\mathrm{y}_{3}}\right)+\left(\frac{\frac{\mathrm{I}_{1}}{\theta_{3}}+\frac{\mathrm{I}_{3}}{\theta_{1}}-2}{\mathrm{y}_{2}}\right)+\left(\frac{\frac{\mathrm{I}_{2}}{\theta_{3}}+\frac{\mathrm{I}_{3}}{\theta_{2}}-2}{\mathrm{y}_{1}}\right) \\
& =\left(\frac{-\frac{42}{7}}{-\frac{8}{2}}+\frac{-\frac{28}{8}}{-\frac{7}{1}}-2 \left\lvert\,+\left(\left.\frac{-\frac{42}{7}}{10}+\frac{-\frac{30}{10}}{-\frac{10}{3}}-2 \right\rvert\, \frac{-\frac{7}{1}}{8}\right)+\left(\frac{-\frac{28}{8}}{-\frac{-\frac{30}{10}}{3}} \frac{-\frac{8}{2}}{-\frac{10}{2}}\right)=0 .\right.\right.
\end{aligned}
$$

In this example $[1,7,42]+[2,8,28]=[3,15,70]$, another row.

For $\mathrm{n}=4$,

$$
\begin{aligned}
& \text { if }\left(\frac{\frac{I_{1}}{\theta_{2}}+\frac{I_{2}}{\theta_{1}}-2}{\mathrm{y}_{3} \mathrm{y}_{4}}\right)+\left(\frac{\frac{\mathrm{I}_{1}}{\theta_{3}}+\frac{\mathrm{I}_{3}}{\theta_{1}}-2}{\mathrm{y}_{2} \mathrm{y}_{4}}\right)+\left(\frac{\frac{\mathrm{I}_{1}}{\theta_{4}}+\frac{\mathrm{I}_{4}}{\theta_{1}}-2}{\mathrm{y}_{2} \mathrm{y}_{3}}\right) \\
& +\left(\frac{\frac{\mathrm{I}_{2}}{\theta_{3}}+\frac{\mathrm{I}_{3}}{\theta_{2}}-2}{\mathrm{y}_{1} \mathrm{y}_{4}}\right)+\left(\frac{\frac{\mathrm{I}_{2}}{\theta_{4}}+\frac{\mathrm{I}_{4}}{\theta_{2}}-2}{\mathrm{y}_{1} \mathrm{y}_{3}}\right)+\left(\frac{\frac{\mathrm{I}_{3}}{\theta_{4}}+\frac{\mathrm{I}_{4}}{\theta_{3}}-2}{\mathrm{y}_{1} \mathrm{y}_{2}}\right)=0
\end{aligned}
$$

then $\left[x_{1}+x_{2}+x_{3}+x_{4}, y_{1}+y_{2}+y_{3}+y_{4}, z_{1}+z_{2}+z_{3}+z_{4}\right]$ is a row.
$[x, y, z]=[3,2,1]$ is not a row, but $\frac{y}{y^{2}-x z}[x, y, z]=\frac{2}{4-3}[3,2,1]=[6,4,2]$ is a row.

