%I #15 May 07 2023 17:07:57
%S 1,3,77,235,517,8155,17567,18235,22827,33355,57053,59899,67947,107067,
%T 107767,151987,232379,238539,289155,306859,331115,360267,411803,
%U 427467,471115,576987,611187,681963,713767,742467,765195,811947,871827,982315,1043915,1174859,1211115
%N Integers m such that A014448(m) == 1 (mod m).
%C Inspired by A335670.
%C All terms > 3 are odd and composite. - _Michel Marcus_, Jun 19 2020
%t Select[Range[10^4], Divisible[LucasL[3#] - 1, #] &] (* _Amiram Eldar_, Jun 19 2020 *)
%Y Cf. A014448, A335670, A335721.
%K nonn
%O 1,2
%A _Chai Wah Wu_, Jun 18 2020