login
Number of permutations of the prime indices of n! with at least one non-singleton run.
3

%I #14 Apr 17 2021 18:13:48

%S 0,0,0,0,4,18,102,786,3960,51450,675570,10804710,139674024,2793377664,

%T 58662908640,1798893694080,26985313555200,782574083010720,

%U 25992638958686400,857757034323189000,30021498596590300800,1563341714743040232000,64179292280096037844800,2631350957341279888915200

%N Number of permutations of the prime indices of n! with at least one non-singleton run.

%C A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

%H Andrew Howroyd, <a href="/A335459/b335459.txt">Table of n, a(n) for n = 0..200</a>

%F A008480(n!) = a(n) + A335407(n).

%e The a(4) = 4 and a(5) = 18 permutations:

%e (1,1,1,2) (1,1,1,2,3)

%e (1,1,2,1) (1,1,1,3,2)

%e (1,2,1,1) (1,1,2,1,3)

%e (2,1,1,1) (1,1,2,3,1)

%e (1,1,3,1,2)

%e (1,1,3,2,1)

%e (1,2,1,1,3)

%e (1,2,3,1,1)

%e (1,3,1,1,2)

%e (1,3,2,1,1)

%e (2,1,1,1,3)

%e (2,1,1,3,1)

%e (2,1,3,1,1)

%e (2,3,1,1,1)

%e (3,1,1,1,2)

%e (3,1,1,2,1)

%e (3,1,2,1,1)

%e (3,2,1,1,1)

%t primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];

%t Table[Length[Select[Permutations[primeMS[n!]],MatchQ[#,{___,x_,x_,___}]&]],{n,0,10}]

%o (PARI) \\ See A335452 for count.

%o a(n)={my(sig=factor(n!)[, 2]); vecsum(sig)!/vecprod([k! | k<-sig]) - count(sig)} \\ _Andrew Howroyd_, Apr 17 2021

%Y The anti-run version is A335407.

%Y Anti-runs are ranked by A333489.

%Y Anti-run compositions are A003242.

%Y Anti-run patterns are A005649.

%Y Permutations of prime indices are A008480.

%Y Permutations of prime indices of n! are A325617.

%Y Anti-run permutations of prime indices are A335452.

%Y Cf. A001222, A022559, A056239, A106351, A112798, A114938, A325535, A335125.

%Y Factorial numbers: A000142, A002982, A007489, A027423, A054991, A108731, A325272, A325273, A325617.

%K nonn

%O 0,5

%A _Gus Wiseman_, Jul 03 2020

%E a(11)-a(13) from _Vaclav Kotesovec_, Jul 07 2020

%E Terms a(14) and beyond from _Andrew Howroyd_, Apr 17 2021