%I #15 May 24 2020 16:13:58
%S 5,33,233,1734,13487,111460,950039,8282970,73631430,662319904,
%T 6022446576,55201746383
%N Number of positive terms of A082916 not exceeding 10^n.
%H Kevin Ford and Sergei Konyagin, <a href="https://arxiv.org/abs/1909.03903">Divisibility of the central binomial coefficient binomial(2n, n)</a>, arXiv:1909.03903 [math.NT], 2019. See Table 2.
%F a(n) ~ c * 10^n/log(10^n), where c = 1.526453... (Ford and Konyagin, 2019).
%e Below 10 there are 5 positive terms of A082916: 1, 3, 5, 7, 9. Therefore a(1) = 5.
%t seqQ[n_] := CoprimeQ[Binomial[2*n, n], n]; seq = {}; p = 10; c = 0; Do[If[seqQ[n], c++]; If[n == p, p *= 10; AppendTo[seq, c]], {n, 1, 10^5}]; seq
%Y Cf. A000984, A082916.
%K nonn,more
%O 1,1
%A _Amiram Eldar_, May 24 2020
%E Terms a(4)-a(11) were taken from the paper by Ford and Konyagin (2019).
%E a(12) from _Giovanni Resta_, May 24 2020