%I
%S 151,233,543,599,937,993,1379,1483,1589,1693,2359,2391,3753,3785,8607,
%T 9559,10707,11547,13029,13869,15017,15969,22115,22243,23627,23755,
%U 25397,25525,26909,27037,33151,34591,35535,36015,37687,38231,39047,40679,57625,59257
%N Numbers m that generate rotationally symmetrical XORtriangles T(m) that have central triangles of zeros.
%C An XORtriangle T(m) is an inverted 01 triangle formed by choosing as top row the binary rendition of n and having each entry in subsequent rows be the XOR of the two values above it, i.e., A038554(n) applied recursively until we reach a single bit.
%C A334556 is the sequence of rotationally symmetrical T(m) (here abbreviated RST).
%C A central zerotriangle (CZT) is a field of contiguous 0bits in T(m) surrounded on all sides by a layer of 1 bits, and generally k > 1 bits of any parity. Alternatively, these might be referred to as "central bubbles".
%H Rémy Sigrist, <a href="/A334769/b334769.txt">Table of n, a(n) for n = 1..10000</a>
%H Michael De Vlieger, <a href="http://vincico.com/seq/a334769.html">Central zerotriangles in rotationally symmetrical XORTriangles</a>, 2020.
%H Michael De Vlieger, <a href="/A334769/a334769_2.txt">Basic aspects of rotationally symmetrical XORtriangles that have central zero triangles</a>
%H Michael De Vlieger, <a href="/A334769/a334769_3.png">Diagram montage</a> of XORtriangles for terms 1 <= n <= 1000.
%H Rémy Sigrist, <a href="/A334769/a334769_1.txt">C program for A334769K</a>
%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%H <a href="/index/X#XORtriangles">Index entries for sequences related to XORtriangles</a>
%e For n = 151, we have rotationally symmetrical T(151) as below, replacing 0 with "." for clarity:
%e 1 . . 1 . 1 1 1
%e 1 . 1 1 1 . .
%e 1 1 . . 1 .
%e . 1 . 1 1
%e 1 1 1 .
%e . . 1
%e . 1
%e 1
%e At the center of the figure we see a CZT with s = 2, ringed by 1s, with k = 2. Thus 151 is in the sequence.
%e For n = 11, we have rotationally symmetrical T(11):
%e 1 . 1 1
%e 1 1 .
%e . 1
%e 1
%e Since there is no CZT, 11 is not in the sequence.
%e For n = 91, we have rotationally symmetrical T(91):
%e 1 . 1 1 . 1 1
%e 1 1 . 1 1 .
%e . 1 1 . 1
%e 1 . 1 1
%e 1 1 .
%e . 1
%e 1
%e This XORtriangle has many bubbles but none in the center, so 91 is not in the sequence.
%t Block[{s, t = Array[NestWhileList[Map[BitXor @@ # &, Partition[#, 2, 1]] &, IntegerDigits[#, 2], Length@ # > 1 &] &, 2^18]}, s = Select[Range[Length@ t], Function[{n, h}, (Reverse /@ Transpose[MapIndexed[PadRight[#, h, 1] &, t[[n]] ]] /. 1 > Nothing) == t[[n]]] @@ {#, IntegerLength[#, 2]} &]; Array[Block[{n = s[[#]]}, If[# == 0, Nothing, n] &@ FirstCase[MapIndexed[If[2 #2 > #3 + 1, Nothing, #1[[#2 ;; #2]]] & @@ {#1, First[#2], Length@ #1} &, NestWhileList[Map[BitXor @@ # &, Partition[#, 2, 1]] &, IntegerDigits[n, 2], Length@ # > 1 &][[1 ;; Ceiling[IntegerLength[#, 2]/(2 Sqrt[3])] + 3]] ], r_List /; FreeQ[r, 1] :> Length@ r] /. k_ /; MissingQ@ k > 0] &, Length@ s  1, 2] ]
%o (C) See Links section.
%Y Cf. A038554, A070939, A334556, A334770, A334771, A334796, A334836.
%K nonn
%O 1,1
%A _Michael De Vlieger_, May 10 2020
%E Data corrected by _Rémy Sigrist_, May 15 2020
