Proofs of two observations from Sequence A334614 (Ya-Ping Lu, Sep 22, 2020)

NAME of A334614

$a(n)=\operatorname{pi}(\operatorname{prime}(n)-n)+n$, where pi is the prime counting function.

DATA of A334614

$1,2,4,6,8,10,11,13,15,18,19,21,22,24,26,28,30,32,34,35,36,38,40,42,45,47,48,50$, $51,53,55,57,60,61,65,66,67,68,70,72,74,76,77,79,81,82,85,88,89,91,93,94,95,99$, $101,102,104,105,106,107,108,112,116,117$

Observation 1: A334614 is an increasing sequence, or $a(n)>a(n-1)>=1$.
Proof: Let p_{n} be the n-th prime. By the definition of Sequence A334614,

$$
a_{n}-a_{n-1}=\left[\pi\left(p_{n}-n\right)+n\right]-\left[\pi\left(p_{n-1}-(n-1)\right)+(n-1)\right]
$$

or

$$
a_{n}-a_{n-1}=\pi\left(p_{n}-n\right)-\pi\left(p_{n-1}-n+1\right)+1
$$

The difference between the two arguments of the prime counting function, $p_{n}-n$ and $p_{n-1}-n+1$, in the equation above is

$$
\left(p_{n}-n\right)-\left(p_{n-1}-n+1\right)=p_{n}-p_{n-1}-1
$$

in which $p_{n}-p_{n-1} \geq 1$ and thus $\left(p_{n}-n\right)-\left(p_{n-1}-n+1\right) \geq 0$, or

$$
p_{n}-n \geq p_{n-1}-n+1 .
$$

Since prime counting function is non-decreasing, we have

$$
\pi\left(p_{n}-n\right) \geq \pi\left(p_{n-1}-n+1\right)
$$

and

$$
a_{n}-a_{n-1}=\pi\left(p_{n}-n\right)-\pi\left(p_{n-1}-n+1\right)+1 \geq 1 .
$$

Therefore

$$
a_{n}>a_{n-1}>\cdots>a_{1}=1
$$

Observation 2: $a(n)<2^{*} n$.

Proof: Let k be the number of prime numbers less than or equal to $p_{n}-\mathrm{n}$, or

$$
k=\pi\left(p_{n}-\mathrm{n}\right)
$$

where $\mathrm{n} \geq 2$. Since

$$
p_{k} \leq p_{n}-\mathrm{n}<p_{n}
$$

which means $p_{k}<p_{n}$ and $\mathrm{k}<\mathrm{n}$. So, we have

$$
p_{k}+k \leq p_{n}-n+k<p_{n}
$$

Lu and Deng ${ }^{[1]}$ showed that there is at least one prime number in the range of $\left(p_{k}, p_{k}+k\right]$. By the definition of k, there is no prime number in the range of $\left(p_{k}, p_{n}-n\right]$. Thus, there must be at least one prime number in the range of ($\left.p_{n}-n, p_{k}+k\right]$. Since $p_{k}+k<p_{n}$, there must be at least one prime number in the range of $\left(p_{n}-n, p_{n}\right)$, where $\mathrm{n} \geq 2$. As p_{n} is a prime number, there should be at least two prime numbers in the range of ($p_{n}-n, p_{n}$], meaning

$$
\pi\left(p_{n}\right)-\pi\left(p_{n}-n\right) \geq 2
$$

or

$$
\pi\left(p_{n}-n\right) \leq \pi\left(p_{n}\right)-2=n-2 .
$$

By definition, $a_{n}=\pi\left(p_{n}-n\right)+n$. Since $\pi\left(p_{n}-n\right) \leq n-2$, we have

$$
a_{n} \leq n-2+n=2 n-2
$$

or, for $n \geq 2$,

$$
a_{n} \leq 2(n-1)<2 n-1<2 n .
$$

Reference

[1] Ya-Ping Lu and Shu-Fang Deng, An upper bound for the prime gap, arXiv:2007.15282 [math.GM], 2020.

