login
Eventual period of a single cell in rule 131 cellular automaton in a cyclic universe of width n.
0

%I #16 Jun 29 2023 13:39:03

%S 1,1,3,8,3,3,14,16,3,20,3,3,3,3,3,32,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,

%T 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,

%U 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3

%N Eventual period of a single cell in rule 131 cellular automaton in a cyclic universe of width n.

%C _Bradley Klee_ computed a(1)-a(10).

%D Bradley Klee, Posting to Math Fun Mailing List, Apr 26 2020

%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (1).

%F Conjectures from _Colin Barker_, May 13 2020: (Start)

%F G.f.: x*(1 + 2*x^2 + 5*x^3 - 5*x^4 + 11*x^6 + 2*x^7 - 13*x^8 + 17*x^9 - 17*x^10 + 29*x^15 - 29*x^16) / (1 - x).

%F a(n) = a(n-1) for n>17.

%F (End)

%Y Cf. A180001, A334496, A334499-A334515.

%K nonn

%O 1,3

%A _N. J. A. Sloane_, May 05 2020

%E More terms from _Jinyuan Wang_, May 09 2020