login
Decimal expansion of Product_{k>=1} (1 - 1/A002144(k)^3).
10

%I #22 Jun 27 2020 11:54:17

%S 9,9,1,2,5,1,1,1,6,2,3,4,0,9,9,8,4,4,2,3,9,7,7,6,3,6,4,6,0,9,0,9,7,7,

%T 4,4,3,3,9,4,1,5,7,9,5,0,2,6,2,9,8,2,0,0,2,1,4,1,5,6,1,0,4,7,1,7,7,3,

%U 2,7,5,9,1,4,8,3,0,0,2,4,2,1,8,9,2,0,5,7,4,1,7,4,5,0,7,2,1,7,7,8,9,7,3,6,2,0

%N Decimal expansion of Product_{k>=1} (1 - 1/A002144(k)^3).

%D B. C. Berndt, Ramanujan's notebook part IV, Springer-Verlag, 1994, p. 64-65.

%H Ph. Flajolet and I. Vardi, <a href="http://algo.inria.fr/flajolet/Publications/landau.ps">Zeta function expansions of some classical constants</a>, Feb 18 1996, p. 7-8.

%H R. J. Mathar, <a href="http://arxiv.org/abs/1008.2547">Table of Dirichlet L-series and Prime Zeta Modulo Functions for Small Moduli</a>, arXiv:1008.2547 [math.NT], 2010-2015, p. 26 (case 4 1 3 = 1/A334425).

%F A334424 / A334425 = 105*zeta(3)/(4*Pi^3).

%F A334425 * A334427 = 8/(7*zeta(3)).

%e 0.991251116234099844239776364609097744339415...

%Y Cf. A002144, A088539, A334446, A334450.

%K nonn,cons

%O 0,1

%A _Vaclav Kotesovec_, Apr 30 2020

%E More digits from _Vaclav Kotesovec_, Jun 27 2020