%I #9 May 28 2020 12:39:35
%S 6,30,126,606,2766,13134,60990,286014,1333926,6235950,29160390,
%T 136280046,637801014,2981709558,13958158806,65278026174,305608333062,
%U 1429710254742,6693530115990,31322452467006,146644481901582,686366924272686,3213444320539710,15042778398965358
%N Number of endless self-avoiding walks of length n on the simple cubic lattice.
%H Nathan Clisby, <a href="https://arxiv.org/abs/1302.2796">Endless self-avoiding walks</a>, arXiv:1302.2796 [cond-mat.stat-mech], 2013. See Table 3 column e_n p. 23.
%Y Cf. A334327, A334328, A334329.
%Y Cf. A334322, A334330, A334331, A334332, A334333, A334334.
%K nonn
%O 1,1
%A _Michel Marcus_, Apr 23 2020