%I #102 Jun 16 2020 13:59:38
%S 5,6,8,13,15,30,17,35,20,21,41,72,25,29,85,30,26,57,35,37,37,76,191,
%T 117,44,250,127,91,260,52,202,51,56,53,220,50,364,65,196,266,342,73,
%U 206,203,148,568,73,77,75,68,85,404,89,256,172,155,601,702,273,350,301,190,589
%N Sum of the largest side lengths of all primitive Heronian triangles with perimeter A096468(n).
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HeronianTriangle.html">Heronian Triangle</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Heronian_triangle">Heronian triangle</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Integer_triangle">Integer Triangle</a>
%e a(1) = 5; there is one primitive Heronian triangle with perimeter A096468(1) = 12, [3,4,5] and 5 is the largest side length.
%e a(6) = 30; there are two primitive Heronian triangles with perimeter A096468(6) = 36, [9,10,17] and [10,13,13]. The sum of the largest side lengths is then 17 + 13 = 30.
%Y Cf. A096468, A330874, A334018.
%K nonn
%O 1,1
%A _Wesley Ivan Hurt_, May 16 2020