%I #8 Apr 20 2020 17:55:46
%S 1,0,0,0,1,1,130,16700,3330915,957659906,382304435016,204772106834160,
%T 143299238797934175,128179127293763395905,143868740984351881041401,
%U 199438057945979365292917046,336793287548313747690192184440,684521312346990661869780271166300
%N Number of nonequivalent n X n binary matrices with 4 ones in every row and column up to permutation of rows.
%C Number of factorizations of m^4 into n factors, where m is a product of exactly n distinct primes and each factor is a product of 4 distinct primes.
%H Andrew Howroyd, <a href="/A333900/b333900.txt">Table of n, a(n) for n = 0..50</a>
%Y Column k=4 of A260340.
%Y Cf. A268668.
%K nonn
%O 0,7
%A _Andrew Howroyd_, Apr 18 2020
