login
A333274
Irregular triangle read by rows: consider the graph defined in A306302 formed from a row of n adjacent congruent rectangles by drawing the diagonals of all visible rectangles; T(n,k) (n >= 1, 2 <= k <= 2n+2) is the number of vertices in the graph at which k polygons meet.
7
4, 0, 1, 0, 4, 8, 0, 1, 0, 0, 28, 4, 2, 0, 1, 0, 0, 54, 4, 14, 0, 2, 0, 1, 0, 0, 124, 0, 22, 8, 2, 0, 2, 0, 1, 0, 0, 214, 0, 32, 4, 20, 0, 2, 0, 2, 0, 1, 0, 0, 382, 0, 50, 0, 26, 12, 2, 0, 2, 0, 2, 0, 1, 0, 0, 598, 0, 102, 0, 18, 4, 26, 0, 2, 0, 2, 0, 2, 0, 1
OFFSET
1,1
COMMENTS
For vertices not on the boundary, the number of polygons meeting at a vertex is simply the degree (or valency) of that vertex.
Row sums are A331755.
Sum_k k*T(n,k) gives A333276.
See A333275 for the degrees of the non-boundary vertices.
Row n is the sum of [0, 0, ..., 0 (n-1 0's), 4, 2*n-2, 0, 0, ..., 0 (n 0's)] and row n of A333275.
EXAMPLE
Led d denote the number of polygons meeting at a vertex (except for boundary points, d is the degree of the vertex).
For n=2, the 4 corners have d=3, and on the center line there are 2 vertices with d=4 and 1 with d=6. In the interiors of each of the two squares there are 3 points with d=4.
So in total there are 4 points with d=3, 8 with d=4, and 1 with d=6. So row 2 of the triangle is [0, 4, 8, 0, 1].
The triangle begins:
4,0,1,
0,4,8,0,1,
0,0,28,4,2,0,1,
0,0,54,4,14,0,2,0,1,
0,0,124,0,22,8,2,0,2,0,1,
0,0,214,0,32,4,20,0,2,0,2,0,1;
0,0,382,0,50,0,26,12,2,0,2,0,2,0,1;
0,0,598,0,102,0,18,4,26,0,2,0,2,0,2,0,1;
0,0,950,0,126,0,32,0,30,16,2,0,2,0,2,0,2,0,1;
0,0,1334,0,198,0,62,0,20,4,32,0,2,0,2,0,2,0,2,0,1;
0,0,1912,0,286,0,100,0,10,0,34,20,2,0,2,0,2,0,2,0,2,0,1;
0,0,2622,0,390,0,118,0,38,0,22,4,38,0,2,0,2,0,2,0,2,0,2,0,1;
0,0,3624,0,510,0,136,0,74,0,10,0,38,24,2,0,2,0,2,0,2,0,2,0,2,0,1;
0,0,4690,0,742,0,154,0,118,0,10,0,24,4,44,0,2,0,2,0,2,0,2,0,2,0,2,0,1;
KEYWORD
nonn,tabf
AUTHOR
STATUS
approved