login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: Sum_{k>=0} (x^(k*(k+1)) * Product_{j=1..k} (1 + x^j)).
12

%I #13 Mar 11 2020 09:50:03

%S 1,0,1,1,0,0,1,1,1,1,0,0,1,1,1,2,1,1,1,0,1,1,1,2,2,2,2,2,1,1,2,1,1,2,

%T 2,3,3,3,3,3,3,2,3,2,2,3,2,3,4,4,4,5,5,5,5,4,5,5,4,4,4,4,5,6,5,6,7,7,

%U 8,8,8,8,9,8,8,8,7,8,8,8,8,9,9,10,11,11

%N G.f.: Sum_{k>=0} (x^(k*(k+1)) * Product_{j=1..k} (1 + x^j)).

%H Vaclav Kotesovec, <a href="/A333179/b333179.txt">Table of n, a(n) for n = 0..10000</a>

%F a(n) ~ c * A333198^sqrt(n) / sqrt(n), where c = 0.3207396095989103757477946185... = sqrt((1 - (2/(23*(23 + 3*sqrt(69))))^(1/3) + ((1/2)*(23 + 3*sqrt(69)))^(1/3)/23^(2/3))/3)/2, c = sqrt(s)/2, where s is the real root of the equation -1 + 8*s - 23*s^2 + 23*s^3 = 0.

%F Limit_{n->infinity} A306734(n) / a(n) = A060006 = (1/2 + sqrt(23/3)/6)^(1/3) + (1/2 - sqrt(23/3)/6)^(1/3) = 1.32471795724474602596090885...

%t nmax = 100; CoefficientList[Series[Sum[x^(n*(n+1))*Product[1+x^k, {k, 1, n}], {n, 0, Sqrt[nmax]}], {x, 0, nmax}], x]

%t nmax = 100; p = 1; s = 1; Do[p = Expand[p*(1 + x^k)*x^(2*k)]; p = Take[p, Min[nmax + 1, Exponent[p, x] + 1, Length[p]]]; s += p;, {k, 1, Sqrt[nmax]}]; Take[CoefficientList[s, x], nmax + 1]

%Y Cf. A003106, A053261, A306734.

%K nonn

%O 0,16

%A _Vaclav Kotesovec_, Mar 10 2020