login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n + sopf(n) - omega(n).
1

%I #52 Apr 25 2022 09:27:30

%S 1,3,5,5,9,9,13,9,11,15,21,15,25,21,21,17,33,21,37,25,29,33,45,27,29,

%T 39,29,35,57,37,61,33,45,51,45,39,73,57,53,45,81,51,85,55,51,69,93,51,

%U 55,55,69,65,105,57,69,63,77,87,117,67,121,93,71,65,81,79,133,85,93,81,141

%N a(n) = n + sopf(n) - omega(n).

%C From _Bernard Schott_, Jun 10 2020: (Start)

%C All terms are odd, but not all odd integers are obtained: see A353046.

%C 1 <= a(n) <= 2n-1 (see formula). (End)

%F a(n) = Sum_{k=1..n} k^(c(k)*(1 - ceiling(n/k) + floor(n/k)), where c is the prime characteristic (A010051).

%F a(n) = n + A055631(n).

%F From _Bernard Schott_, Jun 10 2020: (Start)

%F a(n) = 1 iff n = 1.

%F a(n) = 2*n-1 iff n is prime.

%F a(p^k) = p^k + p - 1 for p prime, k > 0. (End)

%t Table[n - PrimeNu[n] + Sum[p, {p, Select[Divisors[n], PrimeQ]}], {n, 100}]

%o (PARI) a(n) = n + vecsum(factor(n)[, 1]) - omega(n); \\ _Michel Marcus_, Jul 21 2020

%Y Cf. A001221 (omega), A008472 (sopf), A010051, A055631, A353046.

%K nonn,easy

%O 1,2

%A _Wesley Ivan Hurt_, Jun 08 2020