%I #9 Dec 05 2022 04:46:20
%S 1,3,3,5,3,9,3,8,5,9,3,15,3,9,9,11,3,15,3,15,9,9,3,24,5,9,8,15,3,27,3,
%T 15,9,9,9,25,3,9,9,24,3,27,3,15,15,9,3,33,5,15,9,15,3,24,9,24,9,9,3,
%U 45,3,9,15,19,9,27,3,15,9,27,3,40,3,9,15
%N a(n) = Sum_{d|n} tau(d/gcd(d, n/d)), where tau = A000005.
%C Inverse Moebius transform of A322483.
%H Amiram Eldar, <a href="/A332730/b332730.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = Sum_{d|n} A322483(d).
%F a(n) = Sum_{d|n} tau(n/d) * A295316(d).
%F Multiplicative with a(p^e) = floor((e+1)*(e+5)/4) = A024206(e+2). - _Amiram Eldar_, Dec 05 2022
%t Table[Sum[DivisorSigma[0, d/GCD[d, n/d]], {d, Divisors[n]}], {n, 1, 75}]
%t f[p_, e_] := Floor[(e+3)/2]; A322483[n_] := If[n==1, 1, Times @@ (f @@@ FactorInteger[n])]; Table[Sum[A322483[d], {d, Divisors[n]}], {n, 1, 75}]
%t f[p_, e_] := Floor[(e + 1)*(e + 5)/4]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Dec 05 2022 *)
%Y Cf. A000005, A007425, A024206, A048691, A124315, A124316, A295316, A322483, A332619, A332713.
%K nonn,mult
%O 1,2
%A _Ilya Gutkovskiy_, Feb 21 2020