login
A332730
a(n) = Sum_{d|n} tau(d/gcd(d, n/d)), where tau = A000005.
1
1, 3, 3, 5, 3, 9, 3, 8, 5, 9, 3, 15, 3, 9, 9, 11, 3, 15, 3, 15, 9, 9, 3, 24, 5, 9, 8, 15, 3, 27, 3, 15, 9, 9, 9, 25, 3, 9, 9, 24, 3, 27, 3, 15, 15, 9, 3, 33, 5, 15, 9, 15, 3, 24, 9, 24, 9, 9, 3, 45, 3, 9, 15, 19, 9, 27, 3, 15, 9, 27, 3, 40, 3, 9, 15
OFFSET
1,2
COMMENTS
Inverse Moebius transform of A322483.
LINKS
FORMULA
a(n) = Sum_{d|n} A322483(d).
a(n) = Sum_{d|n} tau(n/d) * A295316(d).
Multiplicative with a(p^e) = floor((e+1)*(e+5)/4) = A024206(e+2). - Amiram Eldar, Dec 05 2022
MATHEMATICA
Table[Sum[DivisorSigma[0, d/GCD[d, n/d]], {d, Divisors[n]}], {n, 1, 75}]
f[p_, e_] := Floor[(e+3)/2]; A322483[n_] := If[n==1, 1, Times @@ (f @@@ FactorInteger[n])]; Table[Sum[A322483[d], {d, Divisors[n]}], {n, 1, 75}]
f[p_, e_] := Floor[(e + 1)*(e + 5)/4]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 05 2022 *)
KEYWORD
nonn,mult
AUTHOR
Ilya Gutkovskiy, Feb 21 2020
STATUS
approved