Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Feb 13 2020 02:52:51
%S 0,2,3,8,5,11,32,10,7,13,23,35,1024,66,39,1024,11,23,31,37,47,55,133,
%T 43,258,2050,4099,72,267,87,48,38,17,27,47,71,55,95,263,45,95,111,191,
%U 151,8199,269,175,4099,264,518,1035,2056,1037,8203,2080,138,207,539,1071,167,1048592,98,291,1073741824,13,37,71,75,75,111
%N a(n) = A156552(sigma(A005940(1+n))).
%H Antti Karttunen, <a href="/A332222/b332222.txt">Table of n, a(n) for n = 0..479</a>
%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%F a(n) = A156552(A000203(A005940(1+n))).
%F a(n) = A332221(A005940(1+n)) = A156552(A324054(n)).
%t Array[Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[Table[2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ DivisorSigma[1, #]]] &@ Block[{p = Partition[Split[Join[IntegerDigits[#, 2], {2}]], 2], q}, Times @@ Flatten[Table[q = Take[p, -i]; Prime[Count[Flatten[q], 0] + 1]^q[[1, 1]], {i, Length[p]}]]] &, 70, 0] (* _Michael De Vlieger_, Feb 12 2020, after _Robert G. Wilson v_ at A005940 *)
%o (PARI)
%o A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940
%o A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
%o A332222(n) = A156552(sigma(A005940(1+n)));
%Y Cf. A000203, A005940, A156552, A324054, A332221.
%Y Cf. also A332223.
%K nonn
%O 0,2
%A _Antti Karttunen_, Feb 12 2020