Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Feb 21 2020 10:59:47
%S 2,12,20,68,90,98,132,252,318,362,398,1722,259668,315180,452042
%N Factors k > 1 such that the polynomial k*x^2 - 1 produces a record of its Hardy-Littlewood constant.
%C a(16) > 710000.
%C See A331940 for more information on the Hardy-Littlewood constant. The polynomials described by this sequence have an increasing rate of generating primes.
%C The following table provides the record values of the Hardy-Littlewood constant C, together with the number of primes np generated by the polynomial P(x) = a(n)*x^2 - 1 for 2 <= x <= r = 10^8 and the actual ratio np*(P(r)/r)/Integral_{x=2..P(r)} 1/log(x) dx.
%C a(n) C np C from ratio
%C 2 3.70011 10448345 3.81422
%C 12 4.15027 11154934 4.27219
%C 20 4.43326 11753085 4.56136
%C 68 5.01601 12883801 5.15797
%C .. ....... ........ .......
%C 315180 7.82318 16502584 8.00057
%C 452042 7.85323 16434699 8.02696
%D Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
%H Karim Belabas, Henri Cohen, <a href="/A221712/a221712.gp.txt">Computation of the Hardy-Littlewood constant for quadratic polynomials</a>, PARI/GP script, 2020.
%H Henri Cohen, <a href="/A221712/a221712.pdf">High precision computation of Hardy-Littlewood constants</a>, preprint, 1998. [pdf copy, with permission]
%Y Cf. A221712, A331940, A331941, A331945, A331946, A331948, A331949.
%K nonn,more,hard
%O 1,1
%A _Hugo Pfoertner_, Feb 10 2020