Part I Proof of the formula

Let S(N) be the sum of digits of N in base b. Suppose N, N+1, ..., N+m-1 satisfy: $n \nmid S(N+i), i=0,1,...,m-1$. We intend to find the maximum value of m.

Write
$$n = (b-1)s + t$$
, $1 \le t \le b - 1$. For any $M \in \mathbb{N}$, $0 \le d \le b - t$, we have: $S(b^{s+1}M + b^sd) = S(M) + d$, $S(b^{s+1}M + b^s(d+t) - 1) = S(M) + d + t - 1 + (b-1)s$.

That is, the sums of digits of the numbers in the range $[b^{s+1}M + b^sd, b^{s+1}M + b^s(d+t) - 1]$ are n consecutive numbers, so there must be a multiple of n.

Now there are two cases:

A.
$$b^{s+1} \nmid N+i$$
, $i = 1,2,...,m-1$.

Then there exists some M such that $[N, N+m-1] \subseteq [b^{s+1}M, b^{s+1}(M+1)-1]$. Note that for any $0 \le d \le b-t$ we have

$$[b^{s+1}M + b^sd, b^{s+1}M + b^s(d+t) - 1] \nsubseteq [N, N+m-1].$$

If $m \ge b^s(t+1) - 1$, write $N = b^{s+1}M + b^sd_0 + r$, $0 \le d_0 \le b - t - 1$ (or $0 \le d_0 \le b - t$ if s = 0), $0 \le r \le b^s - 1$ (if s = 0, then r = 0).

- (a) If r=0, then $[b^{s+1}M+b^sd_0,b^{s+1}M+b^s(d_0+t)-1]\subseteq [N,N+m-1]$, a contradiction;
- (b) If $1 \le r_0 \le b^s 1$, then $[b^{s+1}M_0 + b^s(d_0 + 1), b^{s+1}M_0 + b^s(d_0 + 1 + t) 1] \subseteq [N, N + m 1]$, a contradiction. So

$$m \le b^s(t+1) - 2. \tag{1}$$

B. $N + i_0 = b^{s+1}M$ for some $1 \le i_0 \le m - 1$. For convenience, write $g = \gcd(t, b - 1)$. Then $[N, N + m - 1] \subseteq [b^{s+1}M - b^st + 1, b^{s+1}M + b^st - 2]$. Note that for $0 \le i \le b^{s+1} - 1$ we have

$$S(b^{s+1}M - 1 - i) = S(b^{s+1}M - 1) - S(i), S(b^{s+1}M + i) = S(b^{s+1}M) + S(i).$$

Let r_1 , r_2 be the remainder of $S(b^{s+1}M-1)$, $S(b^{s+1}M)$ modulo n respectively. By definition, $r_2 \neq 0$. N, N+1, ..., N+m-1 should satisfy: N-1 is the largest number no greater than $b^{s+1}M-1$ whose digits sum to $S(b^{s+1}M-1)-r_1$; N+m is the smallest number no less than $b^{s+1}M$ whose digits sum to $S(b^{s+1}M)+n-r_2$. Define

$$f(N) = \min\{N': S(N') = N\}.$$

It is not hard to see

$$N-1=b^{s+1}M-1-f(r_1), N+m=b^{s+1}M+f(n-r_2).$$

And $m = f(r_1) + f(n - r_2)$. It is obvious that f(N) is strictly increasing.

Let r'_1 , r'_2 be the remainder of r_1 , $n-r_2$ modulo g respectively. Then we have

$$f(r_1) + f(n - r_2) \le f(n - g + r'_1) + f(n - g + r'_2)$$

= $b^s(t - g + r'_1 + 1) - 1 + b^s(t - g + r'_2 + 1) - 1$,

It is easy to know $r_2 - r_1 \equiv 1 \pmod{g}$. This gives $r_1' + r_2' = g - 1$. So we have

$$m \le b^s (2t - \gcd(t, b - 1) + 1) - 2.$$
 (2)

Compare (1) and (2), we have $m_{\text{max}} = b^s(2t - \gcd(t, b - 1) + 1) - 2$ (see the examples in Part II).

Part II The examples N_0

Now we determine the numbers N_0 such that

$$n \nmid S(N_0 + i), i = 0,1,..., m_{\text{max}} - 1.$$
 (3)

Again, for convenience, write $g = \gcd(t, b - 1)$. Let's suppose that $n \nmid b - 1$, then $n \nmid g$, and $t \mid b - 1$ implies $s \geq 1$.

A. $N_0 + i_0$ is a multiple of b^{s+1} for some $1 \le i_0 \le m_{\text{max}} - 1$.

Suppose that it is $b^u M_0$, $b \nmid M_0$, $u \geq s + 1$. Let r_1 , r_2 be the remainder of $S(b^u M_0 - 1)$, $S(b^u M_0)$ modulo n respectively. Recall that $N_0 = b^u M_0 - f(r_1)$. (3) is valid (i.e., $f(r_1) + f(n - r_2)$ is equal to m_{max}) if and only if the values of r_1 and r_2 are:

$$(r_1, r_2) = (n - g, 1), (n - g + 1, 2), ..., (n - 1, g).$$
 (4)

 $b \nmid M_0$ implies that $S(b^u M_0 - 1) = S(M_0 - 1) + (b - 1)u = S(M_0) - 1 + (b - 1)u$. When (4) holds, we have

$$S(M_0) - 1 + (b-1)u \equiv S(M_0) + n - g - 1 \pmod{n},$$

$$(b-1)u \equiv -g \pmod{n}.$$
(5)

Since $r_1 \ge n - g \ge (b - 1)s$, $f(r_1) = b^s(r_1 - (b - 1)s + 1) - 1 = b^s(n - g - 1 + r_2 - (b - 1)s + 1) - 1 = b^s(t - g + r_2) - 1$. As a result, the necessary condition for N_0 is:

$$N_0 = b^u M_0 - b^s (t - \gcd(t, b - 1) + r_2) + 1, (6)$$

Where u is a nonnegative solution to (5) not equal to s, $b \nmid M_0$, $S(M_0) \equiv r_2 \pmod{n}$ and $1 \leq r_2 \leq g$.

On the other hand, (5) has no solutions in the range [0, s-1]. If u is a nonnegative solution to (5) not equal to s, then $u \ge s+1$, so $b^u M_0$ is indeed a multiple of b^{s+1} . It is easy to see that (4) can be derived from (6), so (6) is also sufficient for (3).

B.
$$b^{s+1} \nmid N_0 + i$$
, $i = 1, 2, ..., m_{\text{max}} - 1$.

This would only happen when t|b-1, where $m_{\max} = b^s(t+1) - 2$. Suppose that $[N_0, N_0 + m_{\max} - 1] \subseteq [b^{s+1}M_0, b^{s+1}(M_0 + 1) - 1]$. Recall that for any $0 \le d \le b - t$ we have $[b^{s+1}M_0 + b^sd, b^{s+1}M_0 + b^s(d+t) - 1] \nsubseteq [N_0, N_0 + m_{\max} - 1]$.

Write
$$N_0 = b^{s+1}M_0 + b^sd_0 + r_0$$
, $0 \le d_0 \le b - t - 1$, $0 \le r_0 \le b^s - 1$.

- (a) If $r_0 = 0$, then $[b^{s+1}M_0 + b^sd_0, b^{s+1}M_0 + b^s(d_0 + t) 1] \subseteq [N_0, N_0 + m_{\text{max}} 1]$, a contradiction:
- (b) If $2 \le r_0 \le b^s 1$, then $[b^{s+1}M_0 + b^s(d_0 + 1), b^{s+1}M_0 + b^s(d_0 + 1 + t) 1] \subseteq [N_0, N_0 + m_{\max} 1]$, a contradiction;
- (c) If $r_0 = 1$, then the sums of digits of the numbers in the range $[N_0, N_0 + m_{\text{max}} 1]$ are from $S(b^{s+1}M_0 + b^s d_0 + 1) = S(M_0) + d_0 + 1$ to $S(b^{s+1}M_0 + b^s (d_0 + t) 1) = S(b^{s+1}M_0 + b^s (d_0 + t + 1) 2) = S(M_0) + d_0 + t + (b-1)s 1 = S(M_0) + d_0 + n 1$. So (3) is valid if and only if

$$N_0 = b^{s+1}M_0 + b^s d_0 + 1,$$

Where $S(M_0) \equiv -d_0 \pmod{n}$, $0 \le d_0 \le b - t - 1$.

(If n|b-1, then (3) holds if and only if $N_0 \equiv 1 \pmod{n}$. The results from either case A or case B are not suitable in this case.)

Part III The smallest example

Write

$$N_{0\min} = b^{u_0} - b^s(t - \gcd(t, b - 1) + 1) + 1,$$

Where u_0 is the smallest nonnegative solution to (5). We will first show that (3) is valid if N_0 is replaced by $N_{0\min}$. This is because: if t|b-1, then $u_0=s$, $N_{0\min}=1$, this is the case B in Part II where $M_0=0$, $d_0=0$ when $n\nmid b-1$; if $t\nmid b-1$, then $u_0\geq s+1$, this is the case A in

Part II where $u = u_0$, $M_0 = 1$, $r_2 = 1$.

We will show that $N_{0\min}$ is the smallest possible value of N_0 in (3). The case t|b-1 is trivial. Now suppose $t\nmid b-1$, then we have (6). Since $S(M_0)\equiv r_2\pmod n$ and $r_2\leq g\leq b-1$, $M_0\geq f(r_2)=r_2$, so $N_0=b^uM_0-b^s(t-\gcd(t,n)+r_2)+1\geq b^{u_0}r_2-b^s(t-\gcd(t,n)+r_2)+1$. As a result, we have

$$N_0 - N_{0\min} \ge (b^{u_0} - b^s)(r_2 - 1) \ge 0$$
,

Which is the desired result.