%I #7 Dec 29 2019 19:35:29
%S 1,1,1,1,1,2,1,1,1,1,1,2,1,1,3,1,1,2,1,1,1,1,1,2,1,1,1,1,1,6,1,1,1,1,
%T 5,4,1,1,1,1,1,2,1,1,3,1,1,2,1,1,1,1,1,2,1,1,1,1,1,6,1,1,1,1,1,2,1,1,
%U 1,5,1,4,1,1,3,1,7,2,1,1,1,1,1,2,1,1,1,1,1,6,1,1,1,1,1,2,1,1,1,1,1,2,1,1,15
%N a(n) = gcd(n, A064989(n)), where A064989 is fully multiplicative with a(2) = 1 and a(prime(k)) = prime(k-1) for odd primes.
%H Antti Karttunen, <a href="/A330749/b330749.txt">Table of n, a(n) for n = 1..65537</a>
%F a(n) = gcd(n, A064989(n)).
%F a(n) = n / A319626(n).
%F a(n) = A064989(A322361(n)).
%o (PARI) A330749(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); gcd(n,factorback(f)); };
%Y Cf. A064989, A319626, A322361.
%K nonn
%O 1,6
%A _Antti Karttunen_, Dec 29 2019