Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Dec 13 2023 11:46:35
%S 0,3,6,13,21,23,27,33,46,67,81,104,107,114,129,166,169,172,193,261,
%T 267,276,287,311,373,430,457,478,485,590,596,656,691,768,789,796,873,
%U 941,969,1047,1093,1149,1170,1239,1303,1349,1491,1533,1555,1567,1805,1808
%N a(n) is the first index m such that A330439(m) = n.
%H Alois P. Heinz, <a href="/A330588/b330588.txt">Table of n, a(n) for n = 1..16000</a>
%p b:= proc() 0 end:
%p g:= proc(n) option remember; local t;
%p t:= `if`(n<2, n, b(g(n-1))+b(g(n-2)));
%p b(t):= b(t)+1; t
%p end:
%p f:= proc(n) option remember; b(g(n)) end:
%p a:= proc() local l, t; t, l:= -1, proc() -1 end;
%p proc(k) local h;
%p while l(k)<0 do t:= t+1; h:= f(t);
%p if l(h)<0 then l(h):= t fi
%p od: l(k)
%p end
%p end():
%p seq(a(n), n=1..60);
%t b[_] = 0;
%t g[n_] := g[n] = Module[{t}, t = If[n < 2, n, b[g[n-1]] + b[g[n-2]]]; b[t]++; t];
%t f[n_] := f[n] = b[g[n]];
%t A[n_, k_] := Module[{l, t = -1, h}, l[_] = {}; While[Length[l[k]] < n, t++; h = f[t]; AppendTo[l[h], t]]; l[k][[n]]];
%t a[k_] := A[1, k];
%t Table[a[n], {n, 1, 60}] (* _Jean-François Alcover_, Dec 13 2023, after _Alois P. Heinz_ *)
%Y Row n=1 of A330587.
%Y Cf. A316774, A330439.
%K nonn
%O 1,2
%A _Alois P. Heinz_, Dec 18 2019