%I #21 Dec 31 2019 08:26:21
%S 1,4,9,16,4,25,10,36,30,49,56,64,112,81,180,9,100,300,20,121,440,55,
%T 144,660,120,169,910,234,196,1274,420,225,1680,735,256,2240,1184,16,
%U 289,2856,1870,34,324,3672,2844,90,361,4560,4199,190,400,5700,6040,400,441,6930,8547,714,484,8470,11792,1298
%N Irregular triangle read by rows: T(n,k) is the sum of all parts of all partitions of n with Durfee square of size k, (n >= 1; 1 <= k <= floor(sqrt(n))).
%F T(n,k) = n*A115994(n,k).
%e Triangle begins:
%e 1;
%e 4;
%e 9;
%e 16, 4;
%e 25, 10;
%e 36, 30;
%e 49, 56;
%e 64, 112;
%e 81, 180, 9;
%e 100, 300, 20;
%e 121, 440, 55;
%e 144, 660, 120;
%e 169, 910, 234;
%e 196, 1274, 420;
%e 225, 1680, 735;
%e 256, 2240, 1184, 16;
%e 289, 2856, 1870, 34;
%e 324, 3672, 2844, 90;
%e 361, 4560, 4199, 190;
%e 400, 5700, 6040, 400;
%e 441, 6930, 8547, 714;
%e 484, 8470, 11792, 1298;
%e ...
%Y Row sums give A066186.
%Y Row lengths give A000196, n >= 1.
%Y Column 1 gives A000290, n >= 1.
%Y Column k starts at row k^2 with k^2.
%Y Cf. A115994.
%K nonn,tabf
%O 1,2
%A _Omar E. Pol_, Dec 22 2019