The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A330306 a(n) = floor(1/2 + {Pi^n}), where { } denotes fractional part. 0
 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1 COMMENTS Is there a 1-to-1 correspondence between real numbers r > 1 and their binary spectra defined as {floorâ€Š(1/2 + r^n mod 1): n >= 1}? If so, can we recover the real number from its spectrum? LINKS MATHEMATICA Array[Floor[1/2 + FractionalPart[Pi^#]] &, 105] (* Michael De Vlieger, Jan 25 2020 *) PROG (PARI) default(realprecision, 1000); a(n) = floor(frac(Pi^n) + 1/2); \\ Jinyuan Wang, Dec 14 2019 CROSSREFS Cf. A000796. Sequence in context: A030214 A025464 A162518 * A300477 A353556 A228495 Adjacent sequences:  A330303 A330304 A330305 * A330307 A330308 A330309 KEYWORD nonn AUTHOR Daniel Forgues, Dec 13 2019 EXTENSIONS More terms from Frank Ellermann, Feb 27 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 11:29 EDT 2022. Contains 354066 sequences. (Running on oeis4.)