login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A330306 a(n) = floor(1/2 + {Pi^n}), where { } denotes fractional part. 0
0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1

COMMENTS

Is there a 1-to-1 correspondence between real numbers r > 1 and their binary spectra defined as {floor (1/2 + r^n mod 1): n >= 1}? If so, can we recover the real number from its spectrum?

LINKS

Table of n, a(n) for n=1..87.

MATHEMATICA

Array[Floor[1/2 + FractionalPart[Pi^#]] &, 105] (* Michael De Vlieger, Jan 25 2020 *)

PROG

(PARI) default(realprecision, 1000); a(n) = floor(frac(Pi^n) + 1/2); \\ Jinyuan Wang, Dec 14 2019

CROSSREFS

Cf. A000796.

Sequence in context: A030214 A025464 A162518 * A300477 A353556 A228495

Adjacent sequences:  A330303 A330304 A330305 * A330307 A330308 A330309

KEYWORD

nonn

AUTHOR

Daniel Forgues, Dec 13 2019

EXTENSIONS

More terms from Frank Ellermann, Feb 27 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 11:29 EDT 2022. Contains 354066 sequences. (Running on oeis4.)