Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Sep 08 2022 08:46:24
%S 28,496,33550336,2658455991569831744654692615953842176
%N Even perfect numbers w from A000396 such that number m = w / 2^(k(w) - 1) - 2^((k(w) - 1)/2) + 1 = 2^k(w) - 2^((k(w) - 1)/2) is also an even perfect number, where k(w) is the Mersenne exponent (A000043) for number w.
%C Corresponding values of even perfect numbers m: 6, 28, 8128, 2305843008139952128, ... (A330163).
%C Corresponding values of Mersenne exponents k(w) and k(m): (3, 5, 13, 61, ...), (2, 3, 7, 31, ...), where k(m) = (k(w) + 1)/2.
%t f[n_] := 2^(n - 1)*(2^n - 1); g[n_] := 2^n - 2^((n - 1)/2); mers = MersennePrimeExponent[Range[10]]; f /@ Select[mers, MemberQ[f /@ mers, g[#]] &] (* _Amiram Eldar_, Dec 06 2019 *)
%o (Magma) [(2^k - 1) * 2^(k - 1): k in [1..100] | SumOfDivisors((2^k - 1) * 2^(k - 1)) / ((2^k - 1) * 2^(k - 1)) eq 2 and SumOfDivisors(2^k - 2^((k-1) div 2)) / (2^k - 2^((k-1) div 2) ) eq 2]
%Y Cf. A000043, A000396, A330163.
%K nonn
%O 1,1
%A _Jaroslav Krizek_, Dec 04 2019