login
Expansion of e.g.f. 1 / (1 - Sum_{k>=1} binomial(k,floor(k/2)) * x^k / k!).
0

%I #4 Nov 27 2019 12:53:01

%S 1,1,4,21,150,1330,14180,176295,2505230,40049226,711379872,

%T 13899553206,296270826852,6841305568812,170127212242416,

%U 4532854743105975,128824523061126750,3890041395675793930,124375112406132404960,4197530354920789582410,149118181703716510545260

%N Expansion of e.g.f. 1 / (1 - Sum_{k>=1} binomial(k,floor(k/2)) * x^k / k!).

%F E.g.f.: 1 / (2 - BesselI(0,2*x) - BesselI(1,2*x)).

%F a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * A001405(k) * a(n-k).

%t nmax = 20; CoefficientList[Series[1/(2 - BesselI[0, 2 x] - BesselI[1, 2 x]), {x, 0, nmax}], x] Range[0, nmax]!

%t a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] Binomial[k, Floor[k/2]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]

%Y Cf. A001405, A054341, A305561, A308849, A328004.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Nov 27 2019