login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Beatty sequence for cosh x, where csch x + sech x = 1 .
3

%I #4 Jan 02 2020 16:16:11

%S 2,4,6,8,10,12,14,17,19,21,23,25,27,29,31,34,36,38,40,42,44,46,49,51,

%T 53,55,57,59,61,63,66,68,70,72,74,76,78,81,83,85,87,89,91,93,95,98,

%U 100,102,104,106,108,110,113,115,117,119,121,123,125,127,130,132

%N Beatty sequence for cosh x, where csch x + sech x = 1 .

%C Let x be the solution of csch x + sech x = 1. Then (floor(n*sinh x)) and (floor(n*cosh x)) are a pair of Beatty sequences; i.e., every positive integer is in exactly one of the sequences. See the Guide to related sequences at A329825.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BeattySequence.html">Beatty Sequence.</a>

%H <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a>

%F a(n) = floor(n*cosh x), where x = 1.390148... is the constant in A329937; a(n) first differs from A329832(n) at n = 68.

%t Solve[1/Sinh[x] + 1/Cosh[x] == 1, x]

%t r = ArcSech[1/8 (4 - 4 Sqrt[2] - 9 Sqrt[5 + 4 Sqrt[2]] + (5 + 4 Sqrt[2])^(3/2))];

%t u = N[r, 250]

%t v = RealDigits[u][[1]];

%t Table[Floor[n*Sinh[r]], {n, 1, 150}] (* A329938 *)

%t Table[Floor[n*Cosh[r]], {n, 1, 150}] (* A329939 *)

%Y Cf. A329825, A329832, A329937, A329938 (complement).

%K nonn,easy

%O 1,1

%A _Clark Kimberling_, Jan 02 2020