login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Beatty sequence for sinh x, where csch x + sech x = 1 .
3

%I #5 Jan 02 2020 16:16:04

%S 1,3,5,7,9,11,13,15,16,18,20,22,24,26,28,30,32,33,35,37,39,41,43,45,

%T 47,48,50,52,54,56,58,60,62,64,65,67,69,71,73,75,77,79,80,82,84,86,88,

%U 90,92,94,96,97,99,101,103,105,107,109,111,112,114,116,118

%N Beatty sequence for sinh x, where csch x + sech x = 1 .

%C Let x be the solution of csch x + sech x = 1. Then (floor(n*sinh x)) and (floor(n*cosh x)) are a pair of Beatty sequences; i.e., every positive integer is in exactly one of the sequences. See the Guide to related sequences at A329825.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BeattySequence.html">Beatty Sequence.</a>

%H <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a>

%F a(n) = floor(n*sinh x), where x = 1.390148... is the constant in A329937; a(n) first differs from A329831(n) at n = 77.

%t Solve[1/Sinh[x] + 1/Cosh[x] == 1, x]

%t r = ArcSech[1/8 (4 - 4 Sqrt[2] - 9 Sqrt[5 + 4 Sqrt[2]] + (5 + 4 Sqrt[2])^(3/2))];

%t u = N[r, 250]

%t v = RealDigits[u][[1]];

%t Table[Floor[n*Sinh[r]], {n, 1, 150}] (* A329938 *)

%t Table[Floor[n*Cosh[r]], {n, 1, 150}] (* A329939 *)

%Y Cf. A329825, A329831, A329937, A329939 (complement).

%K nonn,easy

%O 1,2

%A _Clark Kimberling_, Jan 02 2020