%I #7 Nov 11 2019 14:18:11
%S 0,1,2,1,1,1,72,1,3,2,6,1,1,2,45,1,5,13,73,1,2,1,9,1,1,1,3,2,3,3,2,1,
%T 2,2,1,1,19,1,1,1,1,5,1,5,2,4,3,1,6,1,1,2,1,9,8,1,4,1,1,20,1,1,2,1,5,
%U 2,2,1,2,5,1,56,1,1,1,6,127,1,1,7,2,7,1,6,1,1,3,1,54,1,1,3,2,1,1,3
%N Continued fraction of A328904 = 0.7271601514124259..., solution to 1 + 3^x = 5^x.
%e 0.7271601514124259... = 0 + 1/(1 + 1/(2 + 1/(1 + 1/(1 + 1/(1 + 1/(72 + 1/...))))))
%o (PARI) contfrac(c=solve(x=0,1, 1+3^x-5^x))[^-1] \\ discarding possibly incorrect last term. Use e.g. \p999 to get more terms. - _M. F. Hasler_, Oct 31 2019
%Y Cf. A328912 (cont. frac. of A242208: 1 + 2^x = 4^x), A328913 (cont. frac. of A328900: 2^x + 3^x = 4^x), A329337 (cont. frac. of A328907: 1 + 3^x = 6^x).
%K nonn,cofr
%O 0,3
%A _M. F. Hasler_, Nov 11 2019