Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #24 Nov 25 2019 21:02:01
%S 4,49,1024,11881,15876,29241,23530332816,90070213689,165698657721,
%T 233002186209,8246098046404,363533405168704,24015392820628036,
%U 48563553937960000,6648251155785800089,497199122464645742436,749745222626569665409,10925409774976373110009
%N The squares in A329472.
%C The first 18 terms are the sums of the first 1, 5, 27, 95, 110, 150, 135833, 265758, 360459, 427441, 2542860, 16883814, 137228168, 195143291, 2283242905, 19745293160, 24246846494, 92558706480 nonsquarefree numbers.
%C a(19) > 2*10^22. - _Giovanni Resta_, Nov 17 2019
%F Equals A000290 intersection A329472.
%e 49 is a term because sum of first five nonsquarefree numbers is a square 4 + 8 + 9 + 12 + 16 = 49.
%t p=0; Do[If[!SquareFreeQ[n],p=p+n; If[IntegerQ[p^(1/2)], Print[p]]], {n,1,10^8}]
%o (PARI) lista(nn) = {my(s=0); for(k=1, nn, if(omega(k)!=bigomega(k), s+=k; if(issquare(s), print1(s, ", ")))); } \\ _Jinyuan Wang_, Nov 17 2019
%Y Cf. A000290, A262783, A329472.
%K nonn
%O 1,1
%A _Metin Sariyar_, Nov 15 2019
%E a(13)-a(18) from _Giovanni Resta_, Nov 17 2019