%I #14 Apr 03 2023 10:36:13
%S 11,13,17,19,25,27,29,41,47,61,75,113,181,251,287,339,521,533,573,687,
%T 739,1015,1243,1811,2073,2851,2939,3421,4055,4211,4477,5219,6151,8851,
%U 9251,14219,17123,21703,24313,25053,28811,33065,49305,50775,52693,69805,82077,87771
%N Numbers k such that k![4] - 128 is prime, where k![4] = A007662(k) = quadruple factorial.
%C a(49) > 10^5.
%C The first 5 primes associated with this sequence are: 103, 457, 9817, 65707, 5220997.
%H C. K. Caldwell, The Prime Glossary, <a href="https://t5k.org/glossary/page.php/MultifactorialPrime.html">multifactorial prime</a>
%H C. Caldwell and H. Dubner (Eds): <a href="https://t5k.org/lists/top_ten/">The top ten prime numbers: from the unpublished collections of R. Ondrejka</a> (May 2001), Table 21 F, p. 75.
%H Ken Davis, <a href="http://mfprimes.free-dc.org">Status of Search for Multifactorial Primes</a>.
%H Joe McLean, <a href="http://web.archive.org/web/20091027034731/http://uk.geocities.com/nassarawa%40btinternet.com/probprim2.htm">Interesting Sources of Probable Primes</a>
%t MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
%t Select[Range[1000], (x = MultiFactorial[#, 4] - 128; x > 0 && PrimeQ[x]) &]
%t Select[Range[10,90000],PrimeQ[Times@@Range[#,1,-4]-128]&] (* _Harvey P. Dale_, May 13 2022 *)
%Y Cf. A007662, A283553.
%K nonn
%O 1,1
%A _Robert Price_, Nov 07 2019