OFFSET
1,2
COMMENTS
The Fibonacci numbers F(1) = F(2) = 1 can be used at most once in the representation.
Grundman proved that there are infinitely many runs of 6 consecutive weak-Fibonacci-Niven numbers by showing that if m = F(240k) + F(14) + F(9) for k >= 1, then m, m+1, ... m+5 are 6 consecutive weak-Fibonacci-Niven numbers.
LINKS
Helen G. Grundman, Consecutive Zeckendorf-Niven and lazy-Fibonacci-Niven numbers, Fibonacci Quarterly, Vol. 45, No. 3 (2007), pp. 272-276.
EXAMPLE
6 is in the sequence since it can be represented as the sum of 2 Fibonacci numbers, 1 + 5, and 2 is a divisor of 6.
MATHEMATICA
m = 10; v = Array[Fibonacci, m, 2]; vm = v[[-1]]; seq = {}; Do[s = Subsets[v, 2^m, {k}]; If[(sum = Total @@ s) <= vm && Divisible[sum, Length @@ s], AppendTo[seq, sum]] , {k, 2, 2^m}]; Union @ seq
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Oct 07 2019
STATUS
approved