The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A328215 Starts of runs of 4 consecutive lazy-Fibonacci-Niven numbers (A328212). 7

%I

%S 3674769,17434975,22711023,26152125,32784723,41221725,57846123,

%T 93416568,101681916,122873490,173504940,225947148,234209247,259557450,

%U 333681684,377858544,396241410,413770056,432640989,443496447,444571650,484381323,497625360,556123167,564869940

%N Starts of runs of 4 consecutive lazy-Fibonacci-Niven numbers (A328212).

%C Grundman found a(1) and proved that there are no runs of 5 consecutive lazy-Fibonacci-Niven numbers.

%H Amiram Eldar, <a href="/A328215/b328215.txt">Table of n, a(n) for n = 1..72</a>

%H Helen G. Grundman, <a href="https://www.fq.math.ca/Papers1/45-3/grundman.pdf">Consecutive Zeckendorf-Niven and lazy-Fibonacci-Niven numbers</a>, Fibonacci Quarterly, Vol. 45, No. 3 (2007), pp. 272-276.

%e 3674769 is in the sequence since 3674769, 3674770, 3674771 and 3674772 are in A328212: A112310(3674769) = 21 is a divisor of 3674769, A112310(3674770) = 22 is a divisor of 3674770, A112310(3674771) = 17 is a divisor of 3674771, and A112310(3674772) = 18 is a divisor of 3674772.

%t ooQ[n_] := Module[{k = n}, While[k > 3, If[Divisible[k, 4], Return[True], k = Quotient[k, 2]]]; False]; c = 0; cn = 0; k = 1; s = {}; v = Table[-1, {4}]; While[cn < 10, If[! ooQ[k], c++; d = Total@IntegerDigits[k, 2]; If[Divisible[c, d], v = Join[Rest[v], {c}]; If[AllTrue[Differences[v], # == 1 &], cn++; AppendTo[s, c - 3]]]]; k++]; s

%Y Cf. A112310, A141769, A328212.

%K nonn

%O 1,1

%A _Amiram Eldar_, Oct 07 2019

%E More terms from _Amiram Eldar_, Oct 23 2019

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 21:38 EDT 2021. Contains 348034 sequences. (Running on oeis4.)