login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Regular triangle, coefficients of the polynomial P(n)(x) = (-1)^(n+1)*(2*n+1)*binomial(2*n, n)*Sum_{i=0..n} x^i*binomial(n, i)/(n+i+1).
0

%I #10 Sep 26 2019 08:07:22

%S -1,3,2,-10,-15,-6,35,84,70,20,-126,-420,-540,-315,-70,462,1980,3465,

%T 3080,1386,252,-1716,-9009,-20020,-24024,-16380,-6006,-924,6435,40040,

%U 108108,163800,150150,83160,25740,3432,-24310,-175032,-556920,-1021020,-1178100,-875160,-408408,-109395,-12870

%N Regular triangle, coefficients of the polynomial P(n)(x) = (-1)^(n+1)*(2*n+1)*binomial(2*n, n)*Sum_{i=0..n} x^i*binomial(n, i)/(n+i+1).

%H Karl Dilcher, Maciej Ulas, <a href="https://arxiv.org/abs/1909.11222">Arithmetic properties of polynomial solutions of the Diophantine equation P(x)x^(n+1)+Q(x)(x+1)^(n+1)=1</a>, arXiv:1909.11222 [math.NT], 2019. See Pn(x) Table 1 p. 2.

%e Triangle begins:

%e -1;

%e 3, 2;

%e -10, -15, -6;

%e 35, 84, 70, 20;

%e -126, -420, -540, -315, -70;

%e 462, 1980, 3465, 3080, 1386, 252;

%e -1716, -9009, -20020, -24024, -16380, -6006, -924;

%e ...

%o (PARI) pol(n) = (-1)^(n+1)*(2*n+1)*binomial(2*n, n)*sum(i=0, n, x^i*binomial(n, i)/(n+i+1));

%o row(n) = Vecrev(pol(n));

%o tabl(nn) = for (n=0, nn, print(row(n)));

%Y Cf. A046899 (Q(x) polynomials, up to sign).

%Y Cf. A001700 (1st column, up to sign), A033876 (right diagonal, up to sign).

%K sign,tabl

%O 0,2

%A _Michel Marcus_, Sep 26 2019