%I #14 Jul 31 2021 22:55:19
%S 1,6,9,17,21,23,25,32,37,40,91,107,118,143,154,66,77,89,94,98,109,392,
%T 455,507,513,552,560,595,145,163,173,177,197,207,218,230,233,255,273,
%U 310,325,335,357,378,390,462,498,539,561,623,658,686,711,717,763
%N Values of x in the n solutions corresponding to the least number A300419(n) expressible in exactly n ways as x^2 + x*y + y^2 with x >= y >= 1, with x written as triangle T(n,k), k <= n. y is given in A327797.
%C A combined table for the solutions corresponding to A300419(n) was provided by _Robert G. Wilson v_ as a text file, see link.
%H Hugo Pfoertner, <a href="/A327796/b327796.txt">Table of n, a(n) for n = 1..171</a>, rows 1..18 of triangle, flattened
%H Robert G. Wilson v, <a href="/A300419/a300419.txt">Solutions of a(n) for n <= 16</a>
%e The triangle begins
%e 1,
%e 6, 9,
%e 17, 21, 23,
%e 25, 32, 37, 40,
%e 91, 107, 118, 143, 154,
%e 66, 77, 89, 94, 98, 109,
%e 392, 455, 507, 513, 552, 560, 595,
%e 145, 163, 173, 177, 197, 207, 218, 230
%e .
%e T(3,1)=17, T(3,2)=21, T(3,3)=23 because
%e A300419(3) = 637 corresponds to the 3 solutions
%e 637 = 17^2 + 17*12 + 12^2 = 21^2 + 21*7 + 7^2 = 23^2 + 23*4 + 4^2, using the y-values 12, 7, 4 from A327797.
%Y Cf. A300419, A327797.
%K nonn,tabl
%O 1,2
%A _Hugo Pfoertner_, Sep 25 2019