login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Product_{i>=1, j>=1} 1 / (1 - x^(i*j*(j + 1)/2)).
3

%I #12 Sep 25 2019 01:25:55

%S 1,1,2,4,6,9,17,23,35,54,77,108,163,221,309,436,593,800,1109,1470,

%T 1968,2642,3482,4566,6052,7848,10204,13276,17092,21924,28245,35949,

%U 45762,58231,73609,92789,117140,146799,183826,229995,286483,356040,442566,547489

%N Expansion of Product_{i>=1, j>=1} 1 / (1 - x^(i*j*(j + 1)/2)).

%C Euler transform of A007862.

%H Vaclav Kotesovec, <a href="/A327744/b327744.txt">Table of n, a(n) for n = 0..10000</a>

%F G.f.: Product_{k>=1} 1 / (1 - x^k)^A007862(k).

%t nmax = 43; CoefficientList[Series[Product[1/(1 - x^k)^Length[Select[Divisors[k], IntegerQ[Sqrt[8 # + 1]] &]], {k, 1, nmax}], {x, 0, nmax}], x]

%t a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d Length[Select[Divisors[d], IntegerQ[Sqrt[8 # + 1]] &]], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 43}]

%t nmax = 50; CoefficientList[Series[Product[1/QPochhammer[x^(k*(k + 1)/2)], {k, 1, Sqrt[2*nmax]}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Sep 24 2019 *)

%Y Cf. A004101, A007862, A327745.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Sep 23 2019