%I
%S 1,1,4,6,6,4,8,24,3,6,12,24,14,8,24,96,18,3,20,36,32,12,
%T 24,96,5,14,0,48,30,24,32,384,48,18,48,18,38,20,56,144,42,
%U 32,44,72,18,24,48,384,7,5,72,84,54,0,72,192,80,30,60,144,62,32,24,1536,84
%N Dirichlet g.f.: 1 / (zeta(s) * zeta(s1) * (1  2^(2  s))).
%C Dirichlet inverse of A002129.
%H Georg Fischer, <a href="/A327268/b327268.txt">Table of n, a(n) for n = 1..1000</a>
%F a(1) = 1; a(n) = Sum_{dn, d<n} A002129(n/d) * a(d).
%t a[1] = 1; a[n_] := Sum[Sum[(1)^j j, {j, Divisors[n/d]}] a[d], {d, Most @ Divisors[n]}]; Table[a[n], {n, 1, 65}]
%Y Cf. A002129, A046692, A327274, A327278.
%K sign,mult
%O 1,3
%A _Ilya Gutkovskiy_, Oct 22 2019
