Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Apr 29 2020 07:44:57
%S 1,0,1,0,1,3,0,3,10,13,0,3,39,87,75,0,5,100,510,836,541,0,11,303,2272,
%T 7042,9025,4683,0,13,782,9999,46628,104255,109110,47293,0,19,2009,
%U 39369,284319,948725,1662273,1466003,545835,0,27,5388,154038,1577256,7676830,19798096,28538496,21713032,7087261
%N Number T(n,k) of colored compositions of n using all colors of a k-set such that all parts have different color patterns and the patterns for parts i have i colors in (weakly) increasing order; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
%H Alois P. Heinz, <a href="/A327245/b327245.txt">Rows n = 0..140, flattened</a>
%F Sum_{k=1..n} k * T(n,k) = A327588(n).
%e T(3,1) = 3: 3aaa, 2aa1a, 1a2aa.
%e T(3,2) = 10: 3aab, 3abb, 2aa1b, 2ab1a, 2ab1b, 2bb1a, 1a2ab, 1a2bb, 1b2aa, 1b2ab.
%e T(3,3) = 13: 3abc, 2ab1c, 2ac1b, 2bc1a, 1a2bc, 1b2ac, 1c2ab, 1a1b1c, 1a1c1b, 1b1a1c, 1b1c1a, 1c1a1b, 1c1b1a.
%e Triangle T(n,k) begins:
%e 1;
%e 0, 1;
%e 0, 1, 3;
%e 0, 3, 10, 13;
%e 0, 3, 39, 87, 75;
%e 0, 5, 100, 510, 836, 541;
%e 0, 11, 303, 2272, 7042, 9025, 4683;
%e 0, 13, 782, 9999, 46628, 104255, 109110, 47293;
%e 0, 19, 2009, 39369, 284319, 948725, 1662273, 1466003, 545835;
%e ...
%p C:= binomial:
%p b:= proc(n, i, k, p) option remember; `if`(n=0, p!, `if`(i<1, 0, add(
%p b(n-i*j, min(n-i*j, i-1), k, p+j)*C(C(k+i-1, i), j), j=0..n/i)))
%p end:
%p T:= (n, k)-> add(b(n$2, i, 0)*(-1)^(k-i)*C(k, i), i=0..k):
%p seq(seq(T(n, k), k=0..n), n=0..10);
%t c = Binomial;
%t b[n_, i_, k_, p_] := b[n, i, k, p] = If[n == 0, p!, If[i < 1, 0, Sum[b[n - i*j, Min[n - i*j, i-1], k, p + j] c[c[k + i - 1, i], j], {j, 0, n/i}]]];
%t T[n_, k_] := Sum[b[n, n, i, 0] (-1)^(k - i) c[k, i], {i, 0, k}];
%t Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Apr 29 2020, after _Alois P. Heinz_ *)
%Y Columns k=0-2 give: A000007, A032020 (for n>0), A327847.
%Y Main diagonal gives A000670.
%Y Row sums give A321586.
%Y T(2n,n) gives A327589.
%Y Cf. A327244, A327588.
%K nonn,tabl
%O 0,6
%A _Alois P. Heinz_, Sep 14 2019