login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that cos(2k) < cos(2k+2).
4

%I #16 Oct 21 2024 15:52:17

%S 2,5,8,11,12,14,15,17,18,20,21,24,27,30,33,34,36,37,39,40,42,43,46,49,

%T 52,55,56,58,59,61,62,64,65,68,71,74,77,78,80,81,83,84,86,87,90,93,96,

%U 99,100,102,103,105,106,108,109,112,115,118,121,122,124,125

%N Numbers k such that cos(2k) < cos(2k+2).

%C The sequences A327138, A327139, A327140 partition the positive integers.

%C Conjecture: 2.07 < n*Pi - a(n) < 3.08 for n >= 1.

%H Clark Kimberling, <a href="/A327138/b327138.txt">Table of n, a(n) for n = 1..10000</a>

%e (cos 2, cos 4, ...) = (-0.4, -0.6, 0.9, -0.1, -0.8, ...) approximately, so that the differences, in sign, are - + - - + - - + - - + +, with "+" in places 2,5,8,11,12,... (A327138), "- +" starting in places 1,4,7,10,13,... (A327139), and "- - +" starting in places 3,6,9,22,25,... (A327140).

%t z = 500; f[x_] := f[x] = Cos[2 x]; t = Range[1, z];

%t Select[t, f[#] < f[# + 1] &] (* A327138 *)

%t Select[t, f[#] > f[# + 1] < f[# + 2] &] (* A327139 *)

%t Select[t, f[#] > f[# + 1] > f[# + 2] < f[# + 3] &] (* A327140 *)

%t Position[Partition[Cos[2Range[200]],2,1],_?(#[[1]]<#[[2]]&),1,Heads->False]//Flatten (* _Harvey P. Dale_, Oct 21 2024 *)

%Y Cf. A026309, A246303, A026317, A327139.

%K nonn,easy

%O 1,1

%A _Clark Kimberling_, Aug 23 2019