login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A327132 Last cell visited by knight moves on a spirally numbered hexagonal board of edge-length n, moving to the lowest unvisited cell at each step. 2
1, 1, 1, 34, 45, 76, 98, 135, 181, 234, 290, 338, 413, 487, 566, 654, 742, 823, 930, 1051, 1169, 1291, 1414, 1548, 1685, 1813, 1968, 2138, 2304, 2455, 2632, 2815, 3016, 3187, 3388, 3597, 3803, 4026, 4246, 4473, 4714, 4948, 5194, 5447, 5702, 5969, 6244, 6514 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

A hexagonal board of edge-length 3, for example, is numbered spirally as:

.

      17--18--19

     /

    16   6---7---8

   /    /         \

  15   5   1---2   9

   \    \     /   /

    14   4---3  10

     \          /

      13--12--11

.

In Glinski's hexagonal chess, a knight (N) can move to these (o) cells:

.

      . . . . .

     . . o o . .

    . o . . . o .

   . o . . . . o .

  . . . . N . . . .

   . o . . . . o .

    . o . . . o .

     . . o o . .

      . . . . .

.

a(n) stays constant at 72085 for n >= 177 since 72085 is also the last cell visited by knight moves on a spirally numbered infinite hexagonal board, moving to the lowest unvisited cell at each step.

LINKS

Sangeet Paul, Table of n, a(n) for n = 1..200

Chess variants, Glinski's Hexagonal Chess

Wikipedia, Hexagonal chess - GliƄski's hexagonal chess

CROSSREFS

Cf. A308312, A327131.

Sequence in context: A302457 A063470 A089715 * A260284 A274189 A275194

Adjacent sequences:  A327129 A327130 A327131 * A327133 A327134 A327135

KEYWORD

nonn

AUTHOR

Sangeet Paul, Aug 22 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 26 21:07 EST 2021. Contains 349344 sequences. (Running on oeis4.)