login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f.: Product_{k>=1} (1 + x^(3*k-1) / (3*k-1)).
4

%I #7 Jul 28 2019 12:45:47

%S 1,0,1,0,0,24,0,504,5040,0,226800,3628800,0,438721920,6227020800,

%T 16345929600,1127656857600,20922789888000,58203397324800,

%U 6697914906009600,121645100408832000,655224745383936000,51359276952023040000,1124000727777607680000

%N E.g.f.: Product_{k>=1} (1 + x^(3*k-1) / (3*k-1)).

%H Vaclav Kotesovec, <a href="/A326857/b326857.txt">Table of n, a(n) for n = 0..440</a>

%H Vaclav Kotesovec, <a href="/A326857/a326857.jpg">Graph - the asymptotic ratio (30000 terms)</a>

%F a(n) ~ 2 * Pi * n! / (exp(gamma/3) * 3^(5/6) * Gamma(1/3)^2 * n^(2/3)), where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the Gamma function.

%t nmax = 30; CoefficientList[Series[Product[(1+x^(3*k-1)/(3*k-1)), {k, 1, Floor[nmax/3]+1}], {x, 0, nmax}], x] * Range[0, nmax]!

%Y Cf. A007838, A088994, A326755, A326858.

%K nonn

%O 0,6

%A _Vaclav Kotesovec_, Jul 27 2019