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1. INTRODUCTION

Sequence A224704 gives the number of triangle stacks on n triangles. The
triangles in a triangle stack come in two types - up-triangles with vertices at
the integer lattice points (x, y), (x+ 1, y + 1) and (x+ 2, y) and down-
triangles with vertices at the integer lattice points (x, y), (x− 1, y + 1) and
(x+ 1, y + 1). Both types of triangle have unit area. The construction of a
triangle stack of the type considered in A224704 begins with a bottom row of
contiguous up-triangles. Down-triangles may be placed in the gaps between
adjacent up-triangles. Further up-triangles may then be placed on these
down-triangles and the process continued.

In these notes we vary the construction of a triangle stack by starting with
the bottom row of the stack consisting of contiguous down-triangles. We de�ne
an (n, k, ku, kd) triangle stack of large Schröder type to be a triangle stack of n
triangles with k contiguous down-triangles in the bottom row of the stack, ku
up-triangles and kd down-triangles in the stack. Clearly, ku + kd = n. As an
example, Figure 1 shows two triangle stacks of large Schröder type - a
(17, 8, 11, 6) stack and a (24, 7, 13, 11) stack (in what we might call the
standard position, where the x-axis rests on the bottom row of down-triangles
of the stack and the leftmost vertex of the stack is at the origin).

Figure 1. Examples of triangle stacks of large Schröder type
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Two triangle stacks are considered the same if one is mapped onto the other
by some translation of the plane.

Each triangle stack of large Schröder type is associated in a obvious way
with a large Schröder path (shown highlighted in black in the examples in
Figure 1). There is a bijection between large Schröder paths and triangle
stacks of large Schröder type (hence the choice of name).

We associate the weight qnbkukudkd to an (n, k, ku, kd) triangle stack; thus q
marks the area of the stack, b the triangles in the bottom row of the stack, u
marks the up-triangles and d marks the down-triangles in the stack. The
empty triangle stack (n = 0) is assigned a weight of 1. Our interest is in
determining the generating function for the number f(n, k, ku, kd) of
(n, k, ku, kd) triangle stacks

F (q, b, u, d) =
∑

all (n, k, ku, kd)
triangle stacks

qnbkukudkd

=
∑

n,k,ku,kd

f(n, k, ku, kd)q
nbkukudkd .

Our approach is standard: we describe a decomposition of triangle stacks,
which leads to a functional equation satis�ed by the generating function
F (q, b, u, d). This functional equation can be solved to give a representation
for F (q, b, u, d) as a continued fraction. In Section 5 we use a result from
Ramanujan's last notebook to �nd alternative representations for the
generating function F (q, b, u, d).

2. PRIMITIVE STACKS

We say an (n, k, ku, kd) triangle stack, with k ≥ 1, is a primitive triangle
stack if its next-to-bottom row has k up-triangles resting on the k down-
triangles in the bottom row, and has no empty positions (i.e., contains k − 1
down-triangles).

Figure 2. A primitive (14,4,8,6) stack
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A primitive stack corresponds to a large Schröder path that begins with an
upstep and makes its �rst returns to the x-axis at the end of the stack.

Let g(n, k, ku, kd) denote the number of primitive (n, k, ku, kd) triangle

stacks and let G(q, b, u, d) =
∑

g(n, k, ku, kd)q
nbkukudkd , where the sum is

taken over all primitive stacks, denote the generating function for the number
of weighted primitive triangle stacks. Removing the bottom row of k down-
triangles from a primitive (n, k, ku, kd) stack, together with the k up-triangles
resting on these base triangles, results in a (not-necessarily- primitive) triangle
stack on n− 2k triangles, having k − 1 triangles in its bottom row and
containing ku − k up-triangles and kd − k down-triangles. In Figure 3, for
instance, this process applied to the primitive (14, 4, 8, 6) stack of Figure 2
produces a (non-primitive) (6, 3, 4, 2) triangle stack.

Figure 3.

Thus we see that

g(n, k, ku, kd) = f(n− 2k, k− 1, ku− k, kd− k), n ≥ 2k, k ≥ 1, ku ≥ k, kd ≥ k.

This is equivalent to the relation between generating functions

G(q, b, u, d) = q2budF
(
q, q2bud, u, d

)
. (1)

3. DERIVING THE GENERATING FUNCTION F

Let now L be a non-empty triangle stack of large Schröder type. Two cases
can occur.

Case 1) As in the �rst example in Figure 1, the Schröder path associated with
the stack L may begin with a �at step. In this case L begins with a
down-triangle (of weight qbd) with no up-triangle resting on it, followed by an
arbitrary triangle stack of large Schröder type. Therefore, the generating
function for the number of weighted stacks of this type is equal to
qbdF (q, b, u, d).
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Case 2) The other possibility is that the Schröder path associated with the
triangle stack L begins with an upstep. In this case L decomposes uniquely
into an initial non-empty primitive stack (which extends to where the large
Schröder path associated with L �rst returns to the x-axis) followed by an
arbitrary triangle stack of large Schröder type. The second example in Figure
1 is of this type, beginning with an initial primitive stack on a base of three
down-triangles.

This decomposition shows that the generating function for the number of
stacks of this second type factorises as GF.

In total then, the generating function F decomposes as

F = 1 + qbdF +GF,

leading to

F =
1

1− qbd−G
.

Hence, by (1), we have

F =
1

1− qbd− q2budF (q, q2bud, u, d)
.

Succesive iterations of this identity lead to a formal continued fraction
expansion for the generating function of the number of weighted triangle
stacks of large Schröder type:

F (q, b, u, d) =
1

1− qbd −
q2bud

1− q3bud2 −
q4bu2d2

1− q5bu2d3 −
q6bu3d3

1− q7bu3d4 − · · ·
.

(2)

4. SPECIALISATIONS

1) Setting the variables q, u and d in (2) equal to 1 gives the generating
function for the number of triangle stacks of large Schröder type with n
down-triangles in the bottom row as the continued fraction

1

1− b −
b

1− b −
b

1− b − · · ·
= 1 + 2b+ 6b2 + 22b3 + 90b4 + 394b5 + · · · .

This is a known representation for the generating function of the sequence of
large Schröder numbers A006318, and simply re�ects the bijection between
large Schröder paths of semilength n and triangle stacks of large Schröder type
with a bottom row of n down-triangles.
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2) Setting the variables b, u and d in (2) equal to 1 gives the generating
function for the number of triangle stacks of large Schröder type on n triangles
as the continued fraction

1

1− q −
q2

1− q3 −
q4

1− q5 −
q6

1− q7 − · · ·
= 1 + q + 2q2 + 3q3 + 5q4 + 9q5 + 16q6 + 28q7 + · · · .

The coe�cient sequence [1, 1, 2, 3, 5, 9, 16, 28, ...] is already in the OEIS as
entry A088352, but without a combinatorial interpretation.

3) Setting q = b = 1 in (2) gives the generating function for the number of
triangle stacks of large Schröder type on n down-triangles and k up-triangles as

1

1− d −
ud

1− ud2 −
u2d2

1− u2d3 −
u3d3

1− u3d4 − · · ·
.

The associated coe�cient array begins

n�k 1 u u2 u3 u4 u5 u6

1 1
d 1 1
d2 1 2 1
d3 1 3 4 2
d4 1 4 8 8 3
d5 1 5 13 20 16 5
d6 1 6 19 38 46 31 9

The sequence of row sums of the array [1, 2, 4, 10, 24, 60, 150, ...] is A088354.

5. ALTERNATIVE REPRESENTATIONS FOR F (q, b, u, d)

We use a result from Ramanujan's lost notebook to �nd other
representations for the generating function F (q, b, u, d) of the number of
weighted triangle stacks of large Schröder type. De�ne the q-series

g(b ;λ) =

∞∑
n=0

λnqn
2

(1− q) · · · (1− qn) (1 + bq) · · · (1 + bqn)
.

Entry 6.3.1 in Ramanujan's lost notebook (see [1, p. 159]) gives three formal
continued fraction expressions for the q-series ratio g(b ;λq)/g(b ;λ) :

g(b ;λq)

g(b ;λ)
=

1

1 +

λq

1 +

λq2 + bq

1 +

λq3

1 +

λq4 + bq2

1 + · · · (3)

=
1

1 +

λq

1 + bq +

λq2

1 + bq2 +

λq3

1 + bq3 + · · · (4)

=
1

1− b +

b+ λq

1− b +

b+ λq2

1− b +

b+ λq3

1− b + · · · . (5)
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It follows from (4) that

1

λq

(
g(b ;λ)

g(b ;λq)
− 1

)
=

1

1 + bq +

λq2

1 + bq2 +

λq3

1 + bq3 + · · · . (6)

Making the parameter replacements b→ − b
qu , λ→ −

−b
q2ud , q → q2ud, we �nd

that the right-hand side of (6) becomes

1

1− qbd −
q2bud

1− q3bud2 −
q4bu2d2

1− q5bu2d3 −
q6bu3d3

1− q7bu3d4 − · · ·
,

which is the continued fraction representation for the generating function
F (q, b, u, d) given in (2).

The left-hand side of (6) simpli�es to the q-series ratio

N(q, b, u, d)

D(q, b, u, d)
,

where

N(q, b, u, d) =

∞∑
n=0

(−1)nq2n2+2nbnun
2+ndn

2+n

n∏
k=1

(1− q2kukdk)
n+1∏
k=1

(
1− q2k−1buk−1dk

) (7)

and

D(q, b, u, d) =

∞∑
n=0

(−1)nq2n2

bnun
2

dn
2

n∏
k=1

(1− q2kukdk)
n∏

k=1

(
1− q2k−1buk−1dk

) . (8)

Thus we have a representation for the generating function F as a q-series ratio:

F (q, b, u, d) =
N(q, b, u, d)

D(q, b, u, d)
, (9)

where the q-series N and D are given by (7) and (8).

Another continued fraction representation for the generating function can be
obtained from (3):

F (q, b, u, d) =
1

1 −
qbd+ q2bud

1 −
q4bu2d2

1 −
q3bud2 + q6bu3d3

1 −
q8bu4d4

1

−
q5bu2d3 + q10bu5d5

1 −
q12bu6d6

1 − · · · . (10)

References

[1] G. E. Andrews and B. C. Berndt Ramanujan's Lost Notebook, Part 1,
Springer 2005

6




