login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of covering antichains of subsets of {1..n}, all having different sums.
7

%I #5 Jul 19 2019 07:52:03

%S 2,1,2,8,80,3015,803898

%N Number of covering antichains of subsets of {1..n}, all having different sums.

%C An antichain is a finite set of finite sets, none of which is a subset of any other. It is covering if its union is {1..n}. The edge-sums are the sums of vertices in each edge, so for example the edge sums of {{1,3},{2,5},{3,4,5}} are {4,7,12}.

%e The a(0) = 2 through a(3) = 8 antichains:

%e {} {{1}} {{1,2}} {{1,2,3}}

%e {{}} {{1},{2}} {{1},{2,3}}

%e {{2},{1,3}}

%e {{1,2},{1,3}}

%e {{1,2},{2,3}}

%e {{1},{2},{3}}

%e {{1,3},{2,3}}

%e {{1,2},{1,3},{2,3}}

%e The a(4) = 80 antichains:

%e {1234} {1}{234} {1}{2}{34} {1}{2}{3}{4} {12}{13}{14}{24}{34}

%e {12}{34} {1}{3}{24} {1}{23}{24}{34} {12}{13}{23}{24}{34}

%e {13}{24} {1}{4}{23} {2}{13}{14}{34}

%e {2}{134} {2}{3}{14} {12}{13}{14}{24}

%e {3}{124} {1}{23}{24} {12}{13}{14}{34}

%e {4}{123} {1}{23}{34} {12}{13}{23}{24}

%e {12}{134} {1}{24}{34} {12}{13}{23}{34}

%e {12}{234} {2}{13}{14} {12}{13}{24}{34}

%e {13}{124} {2}{13}{34} {12}{14}{24}{34}

%e {13}{234} {2}{14}{34} {12}{23}{24}{34}

%e {14}{123} {3}{14}{24} {13}{14}{24}{34}

%e {14}{234} {4}{12}{23} {13}{23}{24}{34}

%e {23}{124} {12}{13}{14} {12}{13}{14}{234}

%e {23}{134} {12}{13}{24} {12}{23}{24}{134}

%e {24}{134} {12}{13}{34} {123}{124}{134}{234}

%e {34}{123} {12}{14}{34}

%e {123}{124} {12}{23}{24}

%e {123}{134} {12}{23}{34}

%e {123}{234} {12}{24}{34}

%e {124}{134} {13}{14}{24}

%e {124}{234} {13}{23}{24}

%e {134}{234} {13}{23}{34}

%e {13}{24}{34}

%e {14}{24}{34}

%e {12}{13}{234}

%e {12}{14}{234}

%e {12}{23}{134}

%e {12}{24}{134}

%e {13}{14}{234}

%e {13}{23}{124}

%e {14}{34}{123}

%e {23}{24}{134}

%e {12}{134}{234}

%e {13}{124}{234}

%e {14}{123}{234}

%e {23}{124}{134}

%e {123}{124}{134}

%e {123}{124}{234}

%e {123}{134}{234}

%e {124}{134}{234}

%t stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];

%t cleq[n_]:=Select[stableSets[Subsets[Range[n]],SubsetQ[#1,#2]||Total[#1]==Total[#2]&],Union@@#==Range[n]&];

%t Table[Length[cleq[n]],{n,0,5}]

%Y Antichain covers are A006126.

%Y Set partitions with different block-sums are A275780.

%Y MM-numbers of multiset partitions with different part-sums are A326535.

%Y Antichain covers with equal edge-sums are A326566.

%Y Antichain covers with different edge-sizes are A326570.

%Y The case without singletons is A326571.

%Y Antichains with equal edge-sums are A326574.

%Y Cf. A000372, A035470, A307249, A321469, A326519, A326565, A326569, A326573.

%K nonn,more

%O 0,1

%A _Gus Wiseman_, Jul 18 2019