login
Sum of the seventh largest parts in the partitions of n into 8 primes.
8

%I #7 Oct 18 2021 16:38:25

%S 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,4,4,6,8,9,11,13,15,18,22,20,26,

%T 32,36,37,47,45,59,63,73,74,95,84,111,109,132,123,163,145,196,173,220,

%U 209,278,225,316,272,366,309,427,343,494,405,557,466,659

%N Sum of the seventh largest parts in the partitions of n into 8 primes.

%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>

%F a(n) = Sum_{p=1..floor(n/8)} Sum_{o=p..floor((n-p)/7)} Sum_{m=o..floor((n-o-p)/6)} Sum_{l=m..floor((n-m-o-p)/5)} Sum_{k=l..floor((n-l-m-o-p)/4)} Sum_{j=k..floor((n-k-l-m-o-p)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p)/2)} c(p) * c(o) * c(m) * c(l) * c(k) * c(j) * c(i) * c(n-i-j-k-l-m-o-p) * o, where c = A010051.

%F a(n) = A326455(n) - A326456(n) - A326458(n) - A326459(n) - A326460(n) - A326461(n) - A326462(n) - A326463(n).

%t Table[Sum[Sum[Sum[Sum[Sum[Sum[Sum[o * (PrimePi[i] - PrimePi[i - 1]) (PrimePi[j] - PrimePi[j - 1]) (PrimePi[k] - PrimePi[k - 1]) (PrimePi[l] - PrimePi[l - 1]) (PrimePi[m] - PrimePi[m - 1]) (PrimePi[o] - PrimePi[o - 1]) (PrimePi[p] - PrimePi[p - 1]) (PrimePi[n - i - j - k - l - m - o - p] - PrimePi[n - i - j - k - l - m - o - p - 1]), {i, j, Floor[(n - j - k - l - m - o - p)/2]}], {j, k, Floor[(n - k - l - m - o - p)/3]}], {k, l, Floor[(n - l - m - o - p)/4]}], {l, m, Floor[(n - m - o - p)/5]}], {m, o, Floor[(n - o - p)/6]}], {o, p, Floor[(n - p)/7]}], {p, Floor[n/8]}], {n, 0, 50}]

%Y Cf. A010051, A259198, A326455, A326456, A326458, A326459, A326460, A326461, A326462, A326463.

%K nonn

%O 0,17

%A _Wesley Ivan Hurt_, Jul 06 2019