login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Expansion of Sum_{k>=1} k * x^(2*k) / (1 - x^(3*k)).
6

%I #17 Jun 29 2023 13:22:11

%S 0,1,0,2,1,3,0,5,0,7,1,6,0,8,3,10,1,9,0,15,0,13,1,15,5,14,0,16,1,21,0,

%T 21,3,19,8,18,0,20,0,35,1,24,0,27,9,25,1,30,0,36,3,28,1,27,16,40,0,31,

%U 1,45,0,32,0,42,14,39,0,39,3,56,1,45,0,38,15,40,8,42,0,71

%N Expansion of Sum_{k>=1} k * x^(2*k) / (1 - x^(3*k)).

%H Seiichi Manyama, <a href="/A326400/b326400.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = Sum_{d|n, n/d==2 (mod 3)} d.

%F G.f.: Sum_{k>0} x^(3*k-1) / (1 - x^(3*k-1))^2. - _Seiichi Manyama_, Jun 29 2023

%t nmax = 80; CoefficientList[Series[Sum[k x^(2 k)/(1 - x^(3 k)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest

%t Table[DivisorSum[n, # &, MemberQ[{2}, Mod[n/#, 3]] &], {n, 1, 80}]

%Y Cf. A001822, A002131, A016789, A078182, A078708, A326399, A326401.

%Y Cf. A050464, A363900.

%K nonn

%O 1,4

%A _Ilya Gutkovskiy_, Sep 11 2019