Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Jun 30 2019 06:51:00
%S 1,0,1,4,23,157,1182
%N Number of non-nesting connected simple graphs with vertices {1..n}.
%C Two edges {a,b}, {c,d} are nesting if a < c < d < b or c < a < b < d.
%H Gus Wiseman, <a href="/A326350/a326350.png">The a(4) = 23 non-nesting connected simple graphs</a>.
%H Gus Wiseman, <a href="/A326350/a326350_1.png">The a(5) = 157 non-nesting connected simple graphs</a>.
%t csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
%t Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[csm[#]]<=1&&!MatchQ[#,{___,{x_,y_},___,{z_,t_},___}/;x<z<t<y||z<x<y<t]&]],{n,0,5}]
%Y The inverse binomial transform is the non-covering case A326351.
%Y Connected simple graphs are A001349.
%Y Connected simple graphs with no crossing or nesting edges are A326294.
%Y Simple graphs without crossing or nesting edges are A326244.
%Y Cf. A006125, A054726, A117662, A136653.
%Y Cf. A324169, A326210, A326293, A326329, A326340.
%K nonn,more
%O 0,4
%A _Gus Wiseman_, Jun 30 2019