login
Numbers that cannot be written as a difference of 11-smooth numbers.
5

%I #21 Aug 23 2019 13:56:37

%S 9007,10091,10531,10831,11801,12197,12431,12833,12941,13393,13501,

%T 13619,13679,13751,13907,13939,14219,14423,14737,14851,14893,15217,

%U 15641,15767,15773,15803,15959,16019,16201,16241,16393,16397,16417,16441,16517,16559

%N Numbers that cannot be written as a difference of 11-smooth numbers.

%C Terms were found by generating in sequential order the 11-smooth numbers up to some limit and collecting the differences. The first 100 candidates k were then proved to be correct by showing that each of the following 15 congruences holds:

%C <2> +- k !== <3, 5, 7, 11> mod 563213996185633,

%C <3> +- k !== <2, 5, 7, 11> mod 194191394486113583,

%C <2, 3> +- k !== <5, 7, 11> mod 1762314762258271,

%C <5> +- k !== <2, 3, 7, 11> mod 220836983154619,

%C <2, 5> +- k !== <3, 7, 11> mod 2128827364461031,

%C <3, 5> +- k !== <2, 7, 11> mod 3521575252831519,

%C <7, 11> +- k !== <2, 3, 5> mod 497846284658749,

%C <7> +- k !== <2, 3, 5, 11> mod 5489574535421899,

%C <2, 7> +- k !== <3, 5, 11> mod 6600281111334703,

%C <3, 7> +- k !== <2, 5, 11> mod 834486158701066937,

%C <5, 11> +- k !== <2, 3, 7> mod 239190476358328703,

%C <5, 7> +- k !== <2, 3, 11> mod 3288443009987083,

%C <3, 11> +- k !== <2, 5, 7> mod 14071029652900961,

%C <2, 11> +- k !== <3, 5, 7> mod 1762314762258271,

%C <11> +- k !== <2, 3, 5, 7> mod 411934385702047,

%C where <a,b,...> represents any element in the subgroup generated by a,b,... of the multiplicative subgroup modulo m. For a discussion iof this method of proof see A308247.

%H Esteban Crespi de Valldaura, <a href="/A326319/b326319.txt">Table of n, a(n) for n = 1..101</a>

%e 9007 = A308247(5) cannot be written as the difference of 11-smooth numbers. All smaller numbers can; for example, 1849 = 3^4*5^2 - 2^4*11, 2309 = 2*3^5*5 - 11^2.

%Y Cf. A051038 (11-smooth numbers).

%Y Cf. numbers not the difference of p-smooth numbers for other values of p: A101082 (p=2), A290365 (p=3), A308456 (p=5), A326318 (p=7), A326320 (p=13).

%Y Cf. A308247.

%K nonn

%O 1,1

%A _Esteban Crespi de Valldaura_, Jun 26 2019