login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of integer partitions of n such that the difference between the length of the minimal triangular partition containing and the maximal triangular partition contained in the Young diagram is 1.
8

%I #22 Sep 30 2019 02:23:44

%S 0,0,2,0,3,3,0,4,6,4,0,5,10,10,5,0,6,15,20,15,6,0,7,21,35,35,21,7,0,8,

%T 28,56,70,56,28,8,0,9,36,84,126,126,84,36,9,0,10,45,120,210,252,210,

%U 120,45,10,0,11,55,165,330,462

%N Number of integer partitions of n such that the difference between the length of the minimal triangular partition containing and the maximal triangular partition contained in the Young diagram is 1.

%C The Heinz numbers of these partitions are given by A325196.

%C Under the Bulgarian solitaire step, these partitions form cycles of length >= 2. Length >= 2 means not the length=1 self-loop which occurs from the triangular partition when n is a triangular number. See A074909 for self-loops included. - _Kevin Ryde_, Sep 27 2019

%H FindStat, <a href="http://www.findstat.org/StatisticsDatabase/St000380">St000380: Half the perimeter of the largest rectangle that fits inside the diagram of an integer partition</a>

%H FindStat, <a href="http://www.findstat.org/StatisticsDatabase/St000384">St000384: The maximal part of the shifted composition of an integer partition</a>

%H FindStat, <a href="http://www.findstat.org/StatisticsDatabase/St000783">St000783: The maximal number of occurrences of a colour in a proper colouring of a Ferrers diagram</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GraphDistance.html">Graph Distance</a>

%F Positions of zeros are A000217 = n * (n + 1) / 2.

%F a(n) = A074909(n) - A010054(n). - _Kevin Ryde_, Sep 27 2019

%e The a(2) = 2 through a(12) = 10 partitions (empty columns not shown):

%e (2) (22) (32) (322) (332) (432) (4322) (4332)

%e (11) (31) (221) (331) (422) (3321) (4331) (4422)

%e (211) (311) (421) (431) (4221) (4421) (4431)

%e (3211) (3221) (4311) (5321) (5322)

%e (3311) (43211) (5331)

%e (4211) (5421)

%e (43221)

%e (43311)

%e (44211)

%e (53211)

%t otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];

%t otbmax[ptn_]:=Max@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];

%t Table[Length[Select[IntegerPartitions[n],otb[#]+1==otbmax[#]&]],{n,0,30}]

%o (PARI) a(n) = my(t=ceil(sqrtint(8*n+1)/2), r=n-t*(t-1)/2); if(r==0,0, binomial(t,r)); \\ _Kevin Ryde_, Sep 27 2019

%Y Column k=1 of A325200.

%Y Cf. A060687, A065770, A071724, A256617, A325166, A325169, A325178, A325179, A325181, A325187, A325188, A325189, A325195, A325196.

%K nonn,look

%O 0,3

%A _Gus Wiseman_, Apr 11 2019